SCIENTIFIC REPORTS

Received: 20 May 2016 Accepted: 24 October 2016 Published: 23 November 2016

OPEN Common variants in the PARL and PINK1 genes increase the risk to leprosy in Han Chinese from South China

Dong Wang¹, Deng-Feng Zhang¹, Jia-Qi Feng^{1,2}, Guo-Dong Li^{1,3}, Xiao-An Li⁴, Xiu-Feng Yu⁵, Heng Long⁵, Yu-Ye Li² & Yong-Gang Yao^{1,3}

Leprosy is a chronic infectious and neurological disease caused by Mycobacterium leprae, an unculturable pathogen with massive genomic decay and dependence on host metabolism. We hypothesized that mitochondrial genes PARL and PINK1 would confer risk to leprosy. Thirteen tag SNPs of PARL and PINK1 were analyzed in 3620 individuals with or without leprosy from China. We also sequenced the entire exons of PARL, PINK1 and PARK2 in 80 patients with a family history of leprosy by using the next generation sequencing technology (NGS). We found that PARL SNP rs12631031 conferred a risk to leprosy ($P_{adjusted} = 0.019$) and multibacillary leprosy (MB, $P_{adjusted} = 0.020$) at the allelic level. rs12631031 and rs7653061 in PARL were associated with leprosy and MB (dominant model, Padiusted < 0.05) at the genotypic level. PINK1 SNP rs4704 was associated with leprosy at the genotypic level (Padiusted = 0.004). We confirmed that common variants in PARL and PINK1 were associated with leprosy in patients underwent NGS. Furthermore, PARL and PINK1 could physically interact with each other and were involved in the highly connected network formed by reported leprosy susceptibility genes. Together, our results showed that PARL and PINK1 genetic variants are associated with leprosy.

Leprosy is a chronic infectious disease which has affected mankind for more than 4,000 years¹. Although the number of new cases of leprosy globally decreased to 213,899 patients in 2014², the disease is still a significant threat to public health in many parts of the world. The pathogen, Mycobacterium leprae (M. leprae), is an obligate intracellular parasite and primarily affects the skin and peripheral nerves³. When compared against its close relative, M. tuberculosis, the genome of M. leprae shows an extremely eroded evolution, which has led to nearly half of the functional genes (especially in the metabolic pathways) undergoing inactivation or pseudogenation⁴⁻⁶. This marked reduction in the number of working genes might be the primary reason why M. leprae has a long half-life in vivo and cannot be cultured in vitro. As a result, the provision of energy metabolites and nutritional products by the host has become essential to the survival of M. leprae.

Mitochondria are crucial organelles involved in the cellular energy supply, regulation of apoptotic signals and autophagy, and defenses against pathogenic microbe invasion⁷⁻⁹. Recent studies showed that the host mitochondria might play important roles in M. leprae infection. A lower expression of several mitochondrial genes was observed in nerve biopsies from leprosy patients compared to non-leprous individuals using a microarray assay¹⁰. We also found a significantly increased mtDNA copy number in lepromatous leprosy patients¹¹ compared with controls. The mitochondrial outer membrane protein, LRRK2, has been identified by a genome-wide association study (GWAS) as one of the leprosy susceptibility genes in Han Chinese population¹², and this was confirmed by our recent case-control study¹³ and other studies^{14,15}, although the associated LRRK2 SNPs or their effects were different in these studies. Most recently, we provided solid evidence to show that the OPA1 gene, encoding an mitochondrial inner membrane protein, was associated with leprosy susceptibility possibly by affecting

¹Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China. ²Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China. ³Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China. ⁴Yuxi City Center for Disease Control and Prevention, Yuxi, Yunnan, 653100, China. ⁵Wenshan Institute of Dermatology, Wenshan, Yunnan, 663000, China. Correspondence and requests for materials should be addressed to Y.-G.Y. (email: yaoyq@mail.kiz.ac.cn)

mitochondrial function and antimicrobial pathways¹⁶. All these lines of evidence support our previous hypothesis that mitochondrial function may affect host susceptibility to *M. leprae* and the onset of clinical leprosy¹¹.

The *presenilins-associated rhomboid-like (PARL)* gene is located on chromosome 3q27 and consists of ten exons. PARL is a mitochondrial membrane protein and is a key regulator of mitochondrial integrity and function, such as mitochondrial morphology, apoptosis and glucose metabolism¹⁷⁻¹⁹. PARL can interact with OPA1 during apoptosis by regulating apoptotic cristae remodeling and cytochrome c release²⁰. Moreover, PARL together with OPA1 can control mitochondrial morphology¹⁹ and participate in mitochondrial adaptation to heat shock²¹. Genetic variants in the *PARL* gene can influence mitochondrial content²² and susceptibility to Parkinson's disease²³, type 2 diabetes²⁴ and LHON²⁵, although there were some negative reports^{26,27}.

The PTEN induced putative kinase 1 (PINK1) is a serine/threonine kinase protein that is localized in mitochondria²⁸. PINK1 knockout mice had mitochondrial dysfunction and increased sensitivity to oxidative stress²⁹. Moreover, PINK1 could phosphorylate Parkin, leading to the activation of E3 ligase and the NF- κ B signaling pathway³⁰. The cleavage of PINK1 was mediated by PARL and this was affected by mitochondrial membrane potential³¹. This scenario negatively regulated the PINK1- and PARK2/Parkin-dependent mitophagy³². Mutations in *PINK1* have been reported to be associated with Parkinson's disease^{28,33} and schizophrenia³⁴, but there was a controversy²⁷.

In this study, we aimed to investigate the possible association of genetic variants in the *PARL* and *PINK1* genes with leprosy in Han Chinese. Our results provided several lines of evidence showing that *PARL* and *PINK1* confer genetic susceptibility to leprosy.

Results

Association of *PARL* **and** *PINK1* **SNPs with leprosy** *per se* **and multibacillary patients.** The minor allele frequencies (MAF) of the SNPs analyzed in this study ranged from 5.8% to 48.4% (Table 1). The power to detect an odds ratio (OR) value as 1.6 for risk allele was expected to be above 77.0% (Fig. S1). SNPs rs10937153, rs1573132 and rs607254 were not in Hardy-Weinberg equilibrium in controls (Table S1, P < 0.05) and were excluded in the following analyses. The allele and genotype frequencies of the 10 SNPs in 527 leprosy patients, 583 healthy subjects from the Yuxi Prefecture, Yunnan Province, and pooled 3093 leprosy-unaffected controls were listed in Tables 1 and 2. We constructed the linkage disequilibrium (LD) map of all the tested SNPs in the Yuxi leprosy cases, Yuxi controls and pooled leprosy-unaffected controls (Fig. 1), and observed similar LD structures for these populations. We further performed the principal component (PC) analysis for the studied populations based on the observed genotype frequencies of the 10 SNPs, together with data of the CHB, CHD, JPT, CEU populations from the HapMap data set³⁵. The Yuxi leprosy patient, Yuxi controls and the reported controls from Hunan Province and Shanghai were clustered together, suggesting no substantial population substructure between the cases and controls (Fig. S2).

The RegulomeDB database was used to annotate the analyzed SNPs³⁶. Except for rs2305666 and rs1043424, the other SNPs showed a signal as DNase I hypersensitivity site. SNPs rs10916840 and rs4704 were located in transcription factor binding sites, and rs1061593 showed an eQTL effect (Table 1). Two *PARL* SNPs showed an association with leprosy *per se* (rs12631031-A allele, OR = 1.189, 95% CI [1.029–1.381], P = 0.019; rs12631031, $P_{\text{dominant}} = 0.033$; rs7653061, $P_{\text{dominant}} = 0.027$) and MB (rs12631031-A allele, OR = 1.251, 95% CI [1.036–1.510], P = 0.020; rs12631031, $P_{\text{dominant}} = 0.019$; rs7653061, $P_{\text{dominant}} = 0.023$) when compared with healthy control population from the same region or with the pooled control populations (Tables 1 and 2). One *PINK1* SNP (rs4704) showed an association survived (TT vs. TC vs. CC, $P_{\text{genotypic}} = 0.004$; $P_{\text{dominant}} = 0.027$) when we compared the patients with the pooled controls (Table 2).

Haplotypes were reconstructed for four *PARL* SNPs (rs1061593-rs2305666-rs12631031-rs7653061) and four *PINK1* SNPs (rs10916832-rs10916840-rs1043424-rs4704; SNPs rs650616 and rs3738140 were excluded because these two SNPs were not genotyped in the pooled populations). There were no associations of *PARL* haplotypes or *PINK1* haplotypes with leprosy (cases versus pooled control samples, global *P*-value > 0.05). We observed no significant difference of haplotype distribution frequencies between the cases and controls (Table S2).

Deep sequencing of *PARL* **and** *PINK1* **exons identified an association of coding variants with leprosy.** To identify whether there are any other rare (allele frequency < 1%) or common variants that would confer risk to leprosy, we performed targeted gene sequencing (including the flanking region of the gene) for *PARL, PINK1* and *PARK2* in 80 leprosy patients from the Wenshan Prefecture, Yunnan Province, and compared to the CHB data in 1000 Genomes dataset³⁷. Although we did not find any rare variants of *PARL* and *PINK1* to be associated with leprosy (P > 0.05; partially due to the small sample size), one missense variant (rs3732581 [p.V212L], $P = 6.434 \times 10^{-5}$) and one synonymous variant (rs13091 [p.H216], $P = 1.058 \times 10^{-4}$) in *PARL* and one synonymous variant (rs45530340, [p.L63], $P = 2.668 \times 10^{-4}$) in *PINK1* were significantly associated with leprosy *per se* (Table S3). It should be mentioned that the comparison might be biased as we compared the Wenshan sample to the CHB sample (103 Han Chinese from Beijing) from the 1000 Genomes dataset³⁷ and the samples were not geographically matched. Further *in silico* program affiliated predication analysis showed that no missense variants in *PARL, PINK1* and *PARK2* were predicted to be pathogenic (Table S3).

The risk SNPs affected leprosy-related gene expression in human tissues. We tested the expression quantitative trait loci (eQTLs) of 34 SNPs (including 5 index tag SNPs and 21 captured *PARL* SNPs from the HapMap database³⁵, and 8 tag SNPs in *PINK1*) in leprosy-related human blood, skin and nerve tissues from the Genotype-Tissue Expression project (GTEx, http:// www.gtexportal.org/ home/³⁸). We found that 18 of 26 *PARL* SNPs were significant *cis* eQTLs in whole blood ($P < 1.0 \times 10^{-4}$). Among them, 10 of 26 SNPs were remarkably significant ($P < 1.0 \times 10^{-8}$). Notably, SNP rs7644746 that was tagged by the risk SNP rs7653061 reached a *P* value

			MAF		Leprosy per se			N	ИB			РВ	RegulomeDB
SNP ID	Population*	Allele	(control)	MAF	P [#]	OR (95%CI)	MAF	P [#]	OR	MAF	P#	OR (95%CI)	Score ^a
rs1061593	Yuxi	A/G	0.478	0.484	0.777	1.024 (0.867-1.211)	0.477	0.966	0.996 (0.813-1.219)	0.492	0.601	1.058 (0.856-1.307)	1 f
	Pooled		0.479		0.801	1.017 (0.892-1.160)		0.896	0.988 (0.831-1.176)		0.601	1.050 (0.874-1.263)	
rs2305666	Yuxi	C/A	0.388	0.384	0.840	0.982 (0.827-1.167)	0.376	0.619	0.948 (0.770-1.169)	0.393	0.839	1.023 (0.822-1.272)	6
	Pooled		0.402		0.277	0.928 (0.810-1.062)		0.228	0.896 (0.749-1.072)		0.721	0.966 (0.798-1.169)	
rs12631031	Yuxi	A/G	0.299	0.303	0.814	1.022 (0.852-1.226)	0.314	0.522	1.074 (0.863-1.336)	0.291	0.761	0.965 (0.765-1.217)	5
	Pooled		0.267		0.019	1.189 (1.029-1.381)		0.020	1.251 (1.036-1.510)		0.252	1.126 (0.919-1.380)	
rs7653061	Yuxi	G/T	0.484	0.467	0.444	0.937 (0.793-1.107)	0.473	0.678	0.958 (0.783-1.173)	0.461	0.400	0.913 (0.739-1.129)	5
	Pooled		0.442		0.121	1.110 (0.973-1.266)		0.153	1.135 (0.954-1.351)		0.405	1.082 (0.899-1.302)	
rs10916832	Yuxi	C/T	0.342	0.349	0.750	1.029 (0.862-1.230)	0.362	0.422	1.091 (0.882-1.350)	0.333	0.734	0.962 (0.767-1.205)	5
	Pooled		0.34		0.560	1.042 (0.908-1.196)		0.281	1.104 (0.922-1.323)		0.785	0.973 (0.800-1.184)	
rs10916840	Yuxi	A/G	0.270	0.281	0.558	1.059 (0.874-1.284)	0.281	0.623	1.060 (0.840-1.337)	0.281	0.645	1.058 (0.831-1.348)	4
	Pooled		0.265		0.301	1.082 (0.932-1.256)		0.431	1.083 (0.888-1.319)		0.465	1.081 (0.877-1.333)	
rs1043424	Yuxi	C/A	0.363	0.357	0.783	0.976 (0.818-1.164)	0.362	0.961	0.995 (0.805-1.230)	0.352	0.677	0.954 (0.763-1.192)	7
	Pooled		0.375		0.279	0.927 (0.809-1.063)		0.543	0.946 (0.789-1.133)		0.319	0.907 (0.747-1.100)	
rs650616	Yuxi	A/G	0.437	0.468	0.149	1.133 (0.956-1.344)	0.457	0.427	1.087 (0.885-1.333)	0.480	0.112	1.189 (0.960-1.473)	5
rs3738140	Yuxi	A/G	0.067	0.058	0.380	0.856 (0.605-1.211)	0.052	0.225	0.763 (0.491-1.183)	0.065	0.864	0.963 (0.629-1.476)	5
rs4704	Yuxi	T/C	0.372	0.388	0.455	1.069 (0.898-1.273)	0.393	0.418	1.090 (0.885-1.344)	0.382	0.700	1.044 (0.838-1.302)	4
	Pooled		0.375		0.449	1.054 (0.921-1.206)		0.426	1.075 (0.900-1.284)		0.766	1.029 (0.851-1.245)	

Table 1. Allele frequencies of 4 *PARL* SNPs and 6 *PINK1* SNPs in 527 leprosy patients and 583 healthy controls from the Yuxi Prefecture of Yunnan Province, and in 3093 pooled Han Chinese across China. MB – multibacillary leprosy; PB – paucibacillary leprosy; P - P value; OR – Odds Ratio; 95% CI – 95% confidence interval; MAF – minor allele frequency. 'Pooled - Pooled Han Chinese without leprosy, which contained the reported samples from Hunan Province (N = 984), Shanghai (N = 1526)²⁷, and the Yuxi control samples in this study (Yuxi). **P* values < 0.05 were marked in bold and were recalculated by using the unconditional logistic regression, with an adjustment for sex. a The RegulomeDB score was taken from http://www.regulomedb.org/:³⁶ 1 f, eQTL + TF binding/DNase peak; 4, TF binding + DNase peak; 5, TF binding or DNase peak; 6, other; 7, No data.

of 5.6×10^{-24} in blood (Fig. 2a). *PINK1* SNP rs10916840 was a *cis* eQTL in skin tissue (1.5×10^{-9}) based on the GTEx dataset³⁸, whereas rs4704 was a significant *trans* eQTL in whole blood $(3.1 \times 10^{-30}; \text{Fig. 2b})$. Both SNPs affected the *PINK1* mRNA expression level.

The specific expression pattern of *PARL* and *PINK1* were checked in a variety of human tissues from the BioGPS³⁹ (http://biogps.org/#goto=welcome; Figures S3 and S4). We noticed that *PARL* mRNA expression level was extremely high in immune cells, but *PINK1* had an extremely high mRNA expression in central nervous system. We observed a significantly differential mRNA expression of *PINK1*, but not *PARL*, in leprosy skin lesions of 66 patients from the Gene Expression Omnibus dataset (GEO; http://www.ncbi.nlm.nih.gov/geo/query/acc. cgi?acc=GSE74481)⁴⁰ (Table S4).

Protein interaction network analysis showed an active interaction of PARL with leprosy risk genes. To evaluate the protein interaction with PARL and PINK1, we used the GeneMANIA prediction server⁴¹ and identified that PARL could physically interacted and co-expressed with PINK1. PARL and PINK1 could directly or indirectly interact with many proteins, such as FXR1, NDUFB5, TRAP1 and PARK2 (Fig. 3). Note that PINK1 directly interacted with PARK2, which was identified as a leprosy risk gene in several populations⁴²⁻⁴⁴. However, our NGS analysis for the *PARK2* gene revealed no association of this gene with leprosy though we observed positive associations between *PARL* and leprosy or between *PINK1* and leprosy in this relatively small sample. This observation was consistent with a previous report for no association of *PARK2* SNPs with leprosy in Han Chinese population⁴⁵. However, it should be noted that our exon sequencing of the *PARK2* gene did not cover its promoter region, and we could not exclude a possibility that there existed leprosy-associated SNP(s).

To discern whether PARL and PINK1 participated in molecular networks that contain proteins encoded by leprosy susceptibility genes, we constructed the protein interaction network of PARL, PINK1 and the reported 228 leprosy-associated genes (Table S5; ref. 46 and references therein) by the GeneMANIA⁴¹. We found that PARL and PINK1 could physically interacted, co-expressed and genetically interacted with those proteins of the reported leprosy susceptibility genes, such as *OPA1*, *PARK2*, *HLA-A*, *HLA-DRA*, *HLA-DQB*, and *IL10RA* (ref. 46 and references therein) (Figure S5).

Discussion

Leprosy is a complex infectious and neurological disease, with impairment of both the immune and peripheral nerve systems during the infection³. Host genetic background would affect the susceptibility to leprosy, because of the genomic decay of *M. leprae*, and its completely parasitic mode. Genetic studies, especially recent GWAS in Han Chinese¹², have suggested an important role for host genetic effect on leprosy susceptibility, although the

			Leprosy per se vs. Controls		MB vs. (Controls	PB vs. Controls	
SNP ID	Test model	No. of controls [*]	No.	P#	No.	P #	No.	P #
rs1061593	GENO (Yuxi pooled)	132/293/158 703/1542/829	123/259/140	0.936 0.940	61/143/74	0.947 0.909	62/116/66	0.664 0.624
AA/GA/GG	DOM (Yuxi pooled)	425/158 2948/3200	382/140	0.916 0.943	204/74	0.881 0.900	178/66	0.988 0.978
	REC (Yuxi pooled)	132/451 2245/829	123/399	0.717 0.727	61/217	0.818 0.724	62/182	0.392 0.365
rs2305666	GENO (Yuxi pooled)	86/278/216 494/1478/1098	70/256/190	0.788 0.345	35/138/104	0.677 0.318	35/118/86	0.928 0.834
CC/CA/AA	DOM (Yuxi pooled)	364/216 1972/1098	326/190	0.886 0.644	173/104	0.932 0.554	153/86	0.734 0.946
	REC (Yuxi pooled)	86/494 494/2576	70/446	0.551 0.145	35/242	0.389 0.131	35/204	0.946 0.557
rs12631031	GENO (Yuxi pooled)	52/244/287 211/1220/1643	46/225/252	0.925 0.052	24/127/128	0.591 0.056	22/98/124	0.901 0.407
AA/AG/GG	DOM (Yuxi pooled)	296/287 1431/1643	271/252	0.729 0.033	151/128	0.357 0.019	120/124	0.676 0.428
	REC (Yuxi pooled)	52/531 211/2863	46/477	0.942 0.113	24/255	0.878 0.276	22/222	0.964 0.205
rs7653061	GENO (Yuxi pooled)	136/292/155 601/1513/960	103/282/137	0.289 0.058	53/157/68	0.186 0.254	50/125/69	0.657 0.631
GG/GT/TT	DOM (Yuxi pooled)	428/155 2114/960	385/137	0.898 0.027	210/68	0.506 0.023	175/69	0.618 0.337
	REC (Yuxi pooled)	136/447 601/2473	103/419	0.147 0.923	53/225	0.158 0.845	50/194	0.373 0.722
rs10916832	GENO (Yuxi pooled)	66/245/240 349/1367/1326	62/240/220	0.877 0.825	37/128/114	0.725 0.551	25/112/106	0.771 0.842
CC/CT/TT	DOM (Yuxi pooled)	311/240 1716/1326	302/220	0.641 0.534	165/114	0.458 0.379	137/106	0.987 0.992
	REC (Yuxi pooled)	66/485 349/2693	62/460	0.959 0.789	37/242	0.596 0.372	25/218	0.491 0.576
rs10916840	GENO (Yuxi pooled)	39/212/287 212/1182/1632	32/217/251	0.413 0.184	19/111/135	0.791 0.635	13/106/116	0.286 0.169
AA/AG/GG	DOM (Yuxi pooled)	251/287 1394/1632	249/251	0.311 0.121	130/135	0.522 0.349	119/116	0.308 0.176
	REC (Yuxi pooled)	39/499 212/2814	32/468	0.588 0.621	19/246	0.968 0.920	13/222	0.381 0.390
rs1043424	GENO (Yuxi pooled)	73/253/224 422/1434/1185	66/240/215	0.954 0.553	39/123/116	0.883 0.619	27/117/99	0.673 0.475
CC/CA/AA	DOM (Yuxi pooled)	326/224 1856/1185	306/215	0.858 0.321	162/116	0.783 0.367	144/99	0.997 0.586
	REC (Yuxi pooled)	73/477 422/2619	66/455	0.769 0.458	39/239	0.764 0.944	27/216	0.398 0.227
rs650616	GENO (Yuxi)	108/265/178	116/257/150	0.355	56/143/80	0.554	60/114/70	0.251
AA/AG/GG	DOM (Yuxi)	373/178	373/150	0.197	199/80	0.286	174/70	0.310
	REC (Yuxi)	108/443	116/407	0.298	56/223	0.872	60/184	0.112
rs3738140	GENO (Yuxi)	5/67/502	1/59/466	NA	1/27/251	NA	0/32/215	NA
AA/AG/GG	DOM (Yuxi)	72/502	60/466	NA	28/251	NA	32/215	NA
	REC (Yuxi)	5/569	1/525	NA	1/278	NA	0/247	NA
rs4704	GENO (Yuxi pooled)	77/256/218 434/1416/1192	61/282/178	0.033 0.004	34/151/94	0.113 0.053	27/131/84	0.130 0.066
TT/TC/CC	DOM (Yuxi pooled)	333/218 1850/1192	343/178	0.067 0.027	185/94	0.099 0.071	158/84	0.195 0.169
	REC (Yuxi pooled)	77/474 434/2608	61/460	0.268 0.119	34/245	0.475 0.339	27/215	0.279 0.180

Table 2. Comparison of the genotype frequencies of 4 *PARL* SNPs and 6 *PINK1* SNPs in 527 leprosy patients and 583 healthy controls from the Yuxi Prefecture of Yunnan Province, and in 3093 pooled unaffected Han Chinese. MB – multibacillary leprosy; PB – paucibacillary leprosy; GENO: genotypic; DOM: dominant model; REC: recessive model; *P* - *P* value; OR – Odds Ratio; 95% CI – 95% confidence interval; *NA*– not available. ^{*}Pooled - Pooled Han Chinese without leprosy, which contained the reported samples from Hunan Province (N = 984), Shanghai $(N = 1526)^{27}$, and the Yuxi control samples in this study (Yuxi). [#]*P* values < 0.05 were marked in bold and recalculated by using the unconditional logistic regression, with an adjustment for sex.

.....

exact mechanism was still unknown^{47,48}. Mitochondria play important roles in cellular energy supply, cell signaling, mitophagy and anti-microbe immune responses^{7–9}. It is therefore reasonable to believe that genes involved in mitochondrial function would affect the host response to microbe infection. Indeed, we recently provided evidence that genetic variants of the mitochondrial genes, like *LRRK2* and *OPA1* were associated with leprosy^{13,16}, although three mitochondrial-related antimicrobial/antiviral immune genes (*MAVS*, *MITA* and *MFN2*) showed no evidence to be associated with leprosy⁴⁹. In this study, we found that two mitochondrial genes, *PARL* and *PINK1*, conferred genetic susceptibility to leprosy *per se* and/or multibacillary leprosy.

Among the analyzed tag SNPs in the *PARL* and *PINK1* genes, three SNPs (rs12631031 and rs7653061 of *PARL*; rs4704 of *PINK1*) were associated with leprosy *per se* and/or MB. Furthermore, deep sequencing of the *PARL*, *PINK1* and *PARK2* genes in a relatively small sample identified two *PARL* variants (rs3732581 [p.V212L], rs13091 [p.H216]) and one *PINK1* variant (rs45530340, [p.L63]) that were associated with leprosy. We found no variant in the coding region of the *PARK2* gene to be linked with leprosy. There is a possibility that promoter variant in this gene might confer risk to leprosy and this awaits future study, as the promoter region was not covered by the current exon sequencing. It was well known that genetic variation could influence gene expression^{50,51}, therefore we performed eQTL analysis to elucidate whether these leprosy risk variants altered the *PARL* and *PINK1*

Figure 1. The linkage disequilibrium (LD) structures of *PARL* (**a**) and *PINK1* (**b**) in leprosy patients and healthy controls from the Yuxi Prefecture and pooled control samples. Black squares represented high LD as measured by r^2 , gradually coloring down to white squares of low LD. The individual square showed the r^2 value for each SNP pair (r^2 value is multiplied by 100). The pooled control samples contained the reported Han Chinese without leprosy from Hunan Province (N = 984), Shanghai (N = 1526)²⁷, and the Yuxi control samples in this study (Yuxi).

mRNA expression. We observed that two risk SNPs of *PARL* and all their captured SNPs were *cis* eQTLs for *PARL* mRNA expression in human blood (*P* value from 5.6×10^{-5} to 5.6×10^{-24}), and two risk SNPs of *PINK1* were *cis* and *trans* eQTLs for *PINK1* mRNA expression in skin ($P = 1.5 \times 10^{-9}$) and blood ($P = 3.1 \times 10^{-30}$), respectively. Nevertheless, we only found a significantly different expression of *PINK1* mRNA, but not *PARL* mRNA, between leprotic lesions (leprosy *per se* or its subtypes) and control tissues based on the re-analysis of reported datasets^{10,40}. The exact reason for the discrepancy of *PARL* mRNA expression remains unknown and awaits future study.

In our recent studies, we identified an association of two mitochondrial genes (*LRRK2* and *OPA1*) with leprosy^{13,16}. Although there was no positive interaction among *PARL*, *PINK1*, *OPA1* and *LRRK2* SNPs (Table S6) based on our recently reported data^{13,16} and current data, the positive associations of these four genes with leprosy suggested that mitochondrial related genes should play active roles in leprosy. The protein interaction network analysis supported this speculation, as we found that the other mitochondrial genes (*MCCD1*, *SDHD*, *SNCA*, and *VARS2*) could interact with the reported leprosy susceptibility genes (Table S5). Whether these genes play their roles by directly affecting mitochondrial function, or by participating in other signaling pathways, and then affect leprosy susceptibility, is still an open question.

This study had two limitations. First, the Wenshan population analyzed by the NGS was relatively small, and we compared this population to the CHB data in 1000 Genomes dataset³⁷, which might lead to a biased result as the samples were not well matched. For the Yuxi sample, the coverage of common *PARL* and *PINK1* SNPs might not be sufficient. Second, we did not perform functional assays to characterize the role of *PARL*, *PINK1* and their interactions with previously reported mitochondrial risk genes such as *OPA1*¹⁶ and *LRRK2*¹³ during *M. leprae* infection.

In summary, we found that common variants of the mitochondrial genes *PARL* and *PINK1* would confer risk to leprosy *per se* and/or MB. Combining the reported results^{13,16,46} and the protein interaction network analysis, we found that *PARL* and *PINK1* were participated in a highly connected network formed by the reported leprosy risk genes (ref. 46 and references therein). Future studies are needed to validate the association in independent populations and to explore the underlying mechanism during leprosy onset and progression.

Figure 2. eQTL analysis of the *PARL* **and** *PINK1* **genes.** *cis* and *trans* eQTL of the *PARL* and *PINK1* tag SNPs in human blood, skin and nerve tissues were identified by using the GTEx (http://www.gtexportal.org/home)³⁸ and HaploReg dataset (http://www.broadinstitute.org/mammals/haploreg/haploreg.php)⁵⁴.

Figure 3. Protein interaction network of the *PARL* **and** *PINK1* **genes.** PARL can directly interact with PINK1 according to the GeneMANIA database (http://genemania.org/)⁴¹. The minimum required interaction score is >0.7 and the line thickness indicates the strength of data support.

.....

Materials and Methods

Study subjects. This study was carried out in 1,110 individuals from the Yuxi Prefecture, Yunnan Province: 527 individuals were leprosy patients (onset age from 2 to 67 years, mean age: 24.7 ± 12.3 years; male/female ratio = 387/140; multibacillary/paucibacillary = 279/248); 583 individuals were healthy control subjects from the same geographic area (age from 4 to 88 years, mean age: 36.0 ± 15.5 years; male/female ratio = 365/218). These samples had been analyzed for potential associations of other genes with leprosy in our previous studies^{13,52}. A total of 80 unrelated leprosy patients (38 lepromatous leprosy [LL] patients and 42 tuberculoid leprosy [TT] patients) with a family history of disease (each family has at least two leprosy patients) were collected from the Wenshan Prefecture, Yunnan Province. In brief, the diagnosis of leprosy patients was based on clinical and histopathological features, as well as the bacteriological index if available. A total of 2,510 unaffected Han Chinese

from South China (including 504 schizophrenia cases and 480 healthy controls from Hunan Province and 624 schizophrenia cases and 902 healthy controls from Shanghai) that were analyzed for 5 *PARL* SNPs and 4 *PINK1* SNPs in our recent study²⁷ were included in this study for comparison, as we found no association between *PARL* and *PINK1* variants and schizophrenia in these sample groups²⁷. All healthy individuals and the reported schizophrenia patients had no history of leprosy, HIV infection, and tuberculosis. Written informed consents conforming to the tenets of the Declaration of Helsinki were obtained from each participant or the appointed guardians of the patients (for those who were unable to provide informed consent at the time of blood collection) prior to the study. The experimental methods were carried out in accordance with the approved guidelines. The institutional review board of the Kunming Institute of Zoology (KIZ) approved all experimental protocols of this study.

SNP selection, genotyping and NGS. Genomic DNA was extracted from whole blood by using the AxyPrepTM Blood Genomic DNA Miniprep Kit (Axygen, USA). We selected five *PARL* tag SNPs (rs1061593, rs2305666, rs10937153, rs12631031, rs7653061; Figure S6) and eight *PINK1* tag SNPs (rs10916832, rs10916840, rs1043424, rs1573132, rs650616, rs607254, rs3738140, rs4704; Figure S7) that were located in a region spanning *PINK1* to *DDOST* based on the linkage disequilibrium (LD) pattern of the analyzed genes using the international HapMap project data set (www.hapmap.ncbi.nlm.nih.gov/, Phase 3, CHB³⁵). The potential roles of SNPs, e.g. affecting transcription factor binding sites or enacting other regulatory factor / mechanism, were estimated by referring to the RegulomeDB dataset (http://www.regulomedb.org/)³⁶. All SNPs were genotyped in the cases and controls from the Yuxi Prefecture by using the SNaPshot assay (Table S7) as described in our previous studies^{27,52} at the Kunming Biological Diversity Regional Center of Instruments, KIZ. For the NGS of the *PARL*, *PINK1* and *PARK2* genes in 80 leprosy patients from the Wenshan Prefecture, we used the same approach as described in our recent study⁵³.

PC analysis, expression and expression quantitative trait loci (eQTL) analysis. PC analysis was performed using the genotype frequencies of 10 tag SNPs (three SNPs were excluded due to the deviation of the Hardy-Weinberg equilibrium [HWE]) to show the overall clustering pattern of the 8 populations (leprosy and control populations from the Yuxi Prefecture of Yunnan Province, unaffected Han Chinese populations from Hunan Province and Shanghai²⁷, CHB [136 Han Chinese in Beijing], CHD [109 Chinese in Metropolitan Denver, Colorado], JPT [113 Japanese in Tokyo, Japan], and CEU [113 Utah residents with Northern and Western European ancestry] populations from the HapMap database³⁵) by using the POPSTR software (http://harpending. humanevo.utah.edu/popstr/).

We performed eQTL analysis in different human tissues by using two publically available expression data sets^{10,40}. We first investigated whether the *PARL* and *PINK1* variants affect gene expression in human whole blood, brain and skin tissues using the Genotype-Tissue Expression project (GTEx, http://www.gtexportal.org/home/³⁸) data and the HaploReg dataset (http://www.broadinstitute.org/mammals/haploreg/haploreg.php)⁵⁴. We also considered the overall expression profiling of these two genes in the BioGPS database (http://biogps.org/#goto= welcome)³⁹.

We reanalyzed the largest microarray data regarding leprosy skin lesions, including 24 MB (10 mid-borderline leprosy [BB] + 10 borderline lepromatous [BL] + 4 lepromatous [LL]), 20 PB (10 tuberculoid [TT] + 10 borderline-tuberculoid [BT]), 14 type I reaction (R1), and 10 type II reaction (R2) patients, and normal skin biopsies from 9 healthy individuals. The data was retrieved from GEO under accession series GSE74481 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74481)⁴⁰.

Protein interaction network analysis. To construct the potential protein interaction network of PARL and PINK1, and to test whether the *PARL* and *PINK1* genes interact with the other leprosy risk genes as compiled in our recent study (ref. 46 and references therein), we performed interaction network analysis by referring to a high-confidence protein interaction database GeneMANIA (http://www.genemania.org/)⁴¹.

Statistical analysis. The genotyping call rate of each tag SNP was above 98.7% in our subjects. Cases and controls were compared on the basis of the frequencies of genotypes and alleles. We randomly selected about 2% of samples for direct sequencing and confirmed 100% of consistence with the SNaPshot genotyping results. Power calculations were performed using Quanto software⁵⁵. Linkage disequilibrium (LD) structure was determined using Haploview 4.2⁵⁶. Deviation from the HWE, haplotype comparison and SNP-SNP interaction were performed by using PLINK v1.07⁵⁷. The significant SNPs were further calculated by using the logistic regression, with an adjustment for sex. We predicted the potential pathogenicity of variants in the *PARL*, *PINK1* and *PARK2* genes identified by the NGS by using an *in silico* program affiliated prediction, following the procedure described in our recent study (ref. 53 and references therein). A *P* value < 0.05 was considered to be statistically significant.

References

- Robbins, G. et al. Ancient skeletal evidence for leprosy in India (2000 B.C.). PloS one 4, e5669, doi: 10.1371/journal.pone.0005669 (2009).
- 2. WHO. Global leprosy update, 2014: need for early case detection. Weekly Epidemiological Record 90, 461–476 (2015).
- 3. Britton, W. J. & Lockwood, D. N. Leprosy. Lancet 363, 1209–1219 (2004).
- 4. Cole, S. T. et al. Massive gene decay in the leprosy bacillus. Nature **409**, 1007–1011, doi: 10.1038/35059006 (2001).
- Gómez-Valero, L., Rocha, E. P., Latorre, A. & Silva, F. J. Reconstructing the ancestor of *Mycobacterium leprae*: the dynamics of gene loss and genome reduction. *Genome research* 17, 1178–1185, doi: 10.1101/gr.6360207 (2007).
- 6. Monot, M. *et al.* Comparative genomic and phylogeographic analysis of *Mycobacterium leprae. Nature genetics* **41**, 1282–1289, doi: 10.1038/ng.477 (2009).
- 7. Mayer, B. & Oberbauer, R. Mitochondrial regulation of apoptosis. *News in physiological sciences* 18, 89–94, doi: 10.1152/ nips.01433.2002 (2003).

- Okamoto, K. & Kondo-Okamoto, N. Mitochondria and autophagy: critical interplay between the two homeostats. *Biochimica et biophysica acta* 1820, 595–600, doi: 10.1016/j.bbagen.2011.08.001 (2012).
- Xu, L. G. et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular cell 19, 727–740, doi: 10.1016/j. molcel.2005.08.014 (2005).
- Guerreiro, L. T. et al. Gene expression profiling specifies chemokine, mitochondrial and lipid metabolism signatures in leprosy. PloS one 8, e64748, doi: 10.1371/journal.pone.0064748 (2013).
- 11. Wang, D. et al. Mitochondrial DNA copy number, but not haplogroup, confers a genetic susceptibility to leprosy in Han Chinese from Southwest China. PloS one 7, e38848, doi: 10.1371/journal.pone.0038848 (2012).
- 12. Zhang, F. R. et al. Genomewide association study of leprosy. The new england journal of medicine **361**, 2609–2618, doi: 10.1056/ NEJMoa0903753 (2009).
- Wang, D. et al. Association of the LRRK2 genetic polymorphisms with leprosy in Han Chinese from Southwest China. Genes and immunity 16, 112–119, doi: 10.1038/gene.2014.72 (2015).
- Marcinek, P. et al. LRRK2 and RIPK2 variants in the NOD 2-mediated signaling pathway are associated with susceptibility to Mycobacterium leprae in Indian populations. PloS one 8, e73103, doi: 10.1371/journal.pone.0073103 (2013).
- 15. Fava, V. M. *et al.* A missense *LRRK2* variant is a risk factor for excessive inflammatory responses in leprosy. *PLoS neglected tropical diseases* **10**, e0004412, doi: 10.1371/journal.pntd.0004412 (2016).
- Xiang, Y.-L., Zhang, D.-F., Wang, D., Li, Y.-Y. & Yao, Y.-G. Common variants of OPA1 conferring genetic susceptibility to leprosy in Han Chinese from Southwest China. Journal of dermatological science 80, 133–141, doi: 10.1016/j.jdermsci.2015.09.001 (2015).
- Jeyaraju, D. V. et al. Phosphorylation and cleavage of presenilin-associated rhomboid-like protein (PARL) promotes changes in mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America 103, 18562–18567, doi: 10.1073/pnas.0604983103 (2006).
- Civitarese, A. E. et al. Regulation of skeletal muscle oxidative capacity and insulin signaling by the mitochondrial rhomboid protease PARL. Cell metabolism 11, 412–426, doi: 10.1016/j.cmet.2010.04.004 (2010).
- Pellegrini, L. & Scorrano, L. A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. *Cell death and differentiation* 14, 1275–1284, doi: 10.1038/sj.cdd.4402145 (2007).
- Cipolat, S. *et al.* Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. *Cell* 126, 163–175, doi: 10.1016/j.cell.2006.06.021 (2006).
- Sanjuan Szklarz, L. K. & Scorrano, L. The antiapoptotic OPA1/Parl couple participates in mitochondrial adaptation to heat shock. Biochimica et biophysica acta 1817, 1886–1893, doi: 10.1016/j.bbabio.2012.05.001 (2012).
- Curran, J. E. et al. Genetic variation in PARL influences mitochondrial content. Human genetics 127, 183–190, doi: 10.1007/s00439-009-0756-0 (2010).
- 23. Wust, R. *et al.* Mutation analyses and association studies to assess the role of the presenilin-associated rhomboid-like gene in Parkinson's disease. *Neurobiology of aging* **39217**, e213–e215, doi: 10.1016/j.neurobiolaging.2015.11.025 (2016).
- Walder, K. *et al.* The mitochondrial rhomboid protease PSARL is a new candidate gene for type 2 diabetes. *Diabetologia* 48, 459–468, doi: 10.1007/s00125-005-1675-9 (2005).
- Phasukkijwatana, N. et al. Genome-wide linkage scan and association study of PARL to the expression of LHON families in Thailand. Human genetics 128, 39–49, doi: 10.1007/s00439-010-0821-8 (2010).
- 26. Zhang, A.-M., Jia, X., Zhang, Q. & Yao, Y.-G. No association between the SNPs (rs3749446 and rs1402000) in the PARL gene and LHON in Chinese patients with m.11778G>A. Human genetics 128, 465–468, doi: 10.1007/s00439-010-0875-7 (2010).
- Li, X. et al. Common variants of the PINK1 and PARL genes do not confer genetic susceptibility to schizophrenia in Han Chinese. Molecular genetics and genomics: MGG 290, 585–592, doi: 10.1007/s00438-014-0942-1 (2015).
- Gandhi, S. et al. PINKI protein in normal human brain and Parkinson's disease. Brain: a journal of neurology 129, 1720–1731, doi: 10.1093/brain/awl114 (2006).
- Gautier, C. A., Kitada, T. & Shen, J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America 105, 11364-11369, doi: 10.1073/ pnas.0802076105 (2008).
- Sha, D., Chin, L. S. & Li, L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. *Human molecular genetics* 19, 352–363, doi: 10.1093/hmg/ddp501 (2010).
- Jin, S. M. et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. The Journal of cell biology 191, 933–942, doi: 10.1083/jcb.201008084 (2010).
- Meissner, C., Lorenz, H., Hehn, B. & Lemberg, M. K. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 11, 1484–1498, doi: 10.1080/15548627.2015.1063763 (2015).
- Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160, doi: 10.1126/ science.1096284 (2004).
- Steinlechner, S. et al. Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations. Journal of neurology, neurosurgery, and psychiatry 78, 532–535, doi: 10.1136/jnnp.2006.105676 (2007).
- 35. International HapMap Consortium. The International HapMap Project. Nature 426, 789-796, doi: 10.1038/nature02168 (2003).
- 36. Boyle, A. P. *et al.* Annotation of functional variation in personal genomes using RegulomeDB. *Genome research* **22**, 1790–1797, doi: 10.1101/gr.137323.112 (2012).
- 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74, doi: 10.1038/ nature15393 (2015).
- 38. G. TEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nature genetics 45, 580-585, doi: 10.1038/ng.2653 (2013).
- Wu, C., Jin, X., Tsueng, G., Afrasiabi, C. & Su, A. I. BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic acids research 44, D313–D316, doi: 10.1093/nar/gky1104 (2016).
- Belone Ade, F et al. Genome-wide screening of mRNA expression in leprosy patients. Frontiers in genetics 6, 334, doi: 10.3389/ fgene.2015.00334 (2015).
- Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic acids research 38, W214–W220, doi: 10.1093/nar/gkq537 (2010).
- 42. Mira, M. T. *et al.* Susceptibility to leprosy is associated with *PARK2* and *PACRG. Nature* **427**, 636–640, doi: 10.1038/nature02326 (2004).
- Chopra, R. et al. PARK2 and proinflammatory/anti-inflammatory cytokine gene interactions contribute to the susceptibility to leprosy: a case-control study of North Indian population. BMJ open 4, e004239, doi: 10.1136/bmjopen-2013-004239 (2014).
- 44. Chopra, R. *et al.* Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated indian population groups. *PLoS genetics* **9**, e1003578, doi: 10.1371/journal.pgen.1003578 (2013).
- Li, J. et al. Association study of the single nucleotide polymorphisms of PARK2 and PACRG with leprosy susceptibility in Chinese population. European journal of human genetics: EJHG 20, 488–489, doi: 10.1038/ejhg.2011.190 (2012).
- Zhang, D.-F., Wang, D., Li, Y.-Y. & Yao, Y.-G. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile. *Journal of dermatological science* 82, 18–27, doi: 10.1016/j.jdermsci.2016.01.001 (2016).
- Misch, E. A., Berrington, W. R., Vary, J. C. Jr. & Hawn, T. R. Leprosy and the human genome. *Microbiology and molecular biology reviews* 74, 589–620, doi: 10.1128/MMBR.00025-10 (2010).

- Alter, A., Grant, A., Abel, L., Alcaïs, A. & Schurr, E. Leprosy as a genetic disease. *Mammalian genome* 22, 19–31, doi: 10.1007/ s00335-010-9287-1 (2011).
- 49. Wang, D. *et al.* Genetic variants of the *MAVS*, *MITA* and *MFN2* genes are not associated with leprosy in Han Chinese from Southwest China. *Infection, Genetics and Evolution*, doi: 10.1016/j.meegid.2016.08.021 (2016).
- Francesconi, M. & Lehner, B. The effects of genetic variation on gene expression dynamics during development. *Nature* 505, 208–211, doi: 10.1038/nature12772 (2014).
- Williams, R. B., Chan, E. K., Cowley, M. J. & Little, P. F. The influence of genetic variation on gene expression. *Genome research* 17, 1707–1716, doi: 10.1101/gr.6981507 (2007).
- Wang, D. et al. Genetic variants of the MRC1 gene and the IFNG gene are associated with leprosy in Han Chinese from Southwest China. Human genetics 131, 1251–1260, doi: 10.1007/s00439-012-1153-7 (2012).
- Zhang, D.-F. et al. PLD3 in alzheimer's disease: a modest effect as revealed by updated association and expression analyses. Molecular neurobiology 53, 4034–4045, doi: 10.1007/s12035-015-9353-5 (2016).
- Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. *Nucleic acids research* 40, D930–D934, doi: 10.1093/nar/gkr917 (2012).
- 55. Gauderman, W. J. Sample size requirements for matched case-control studies of gene-environment interaction. *Statistics in medicine* **21**, 35–50, doi: 10.1002/sim.973 (2002).
- Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics* 21, 263–265, doi: 10.1093/bioinformatics/bth457 (2005).
- Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of human genetics 81, 559–575, doi: 10.1086/519795 (2007).

Acknowledgements

We thank Dr. Yu Fan and Miss Xiao Li for technical assistance and Ian Logan for language editing and helpful comments. This study was supported by the National Natural Science Foundation of China (31271346, 81573034) and Yunnan Province (2014FB177). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Y.G.Y. and D.W. designed the study; X.A.L., X.F.Y., H.L. and Y.Y.L. collected the samples and clinical information; D.W., J.Q.F and D.F.Z. performed the experiments; D.W., G.D.L. and D.F.Z. analyzed the data; D.W. and Y.G.Y. wrote the manuscript. All authors approved the submission of this manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wang, D. *et al.* Common variants in the *PARL* and *PINK1* genes increase the risk to leprosy in Han Chinese from South China. *Sci. Rep.* **6**, 37086; doi: 10.1038/srep37086 (2016).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016

Online supplementary data

Common variants in the *PARL* and *PINK1* genes increase the risk to leprosy in Han Chinese from South China

Dong Wang¹, Deng-Feng Zhang¹, Jia-Qi Feng^{1, 2}, Guo-Dong Li^{1, 5}, Xiao-An Li³, Xiu-Feng Yu⁴, Heng Long⁴, Yu-Ye Li², Yong-Gang Yao^{1, 5}*

¹ Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China

² Department of Dermatology, the First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, 650032, China

³ Yuxi City Center for Disease Control and Prevention, Yuxi, Yunnan, 653100, China

⁴ Wenshan Institute of Dermatology, Wenshan, Yunnan, 663000, China

⁵ Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China

Corresponding author:

Dr. Yong-Gang Yao, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. Tel/Fax: 86-871-65180085; E-mail: yaoyg@mail.kiz.ac.cn

SNPs	<i>P-value</i> (Yuxi control)	<i>P-value</i> (Pooled controls)
rs1061593	0.934	0.692
rs2305666	0.861	0.881
rs10937153	0.016	0.084
rs12631031	1.000	0.550
rs7653061	1.000	0.942
rs10916832	0.777	1.000
rs10916840	1.000	0.889
rs1043424	0.927	0.728
rs1573132	0.000	-
rs650616	0.604	-
rs607254	0.008	-
rs3738140	0.167	-
rs4704	0.927	0.617

Table S1. Hardy-Weinberg equilibrium test for 5 PARL SNPs and 8 PINK1 SNPs

Note: P-values less than 0.05 were marked in bold. The Yuxi control sample has 583 individuals.

The pooled controls contained the reported data from Hunan Province (N = 984), Shanghai (N =

1526)¹, and the Yuxi control individuals in this study (Yuxi).

	Pooled Control	Case vs. C	ontrol	MB vs. Co	ntrol	PB vs. Control		
Haplotype "	Frequency	Frequency	. Р	Frequency	P	Frequency	Р	
PARL								
G-A-G-T	0.352	0.334	0.271	0.320	0.143	0.350	0.900	
A-C-G-G	0.136	0.125	0.348	0.125	0.475	0.125	0.500	
A-C-A-G	0.134	0.150	0.175	0.140	0.658	0.160	0.109	
A-A-G-T	0.125	0.136	0.348	0.144	0.220	0.127	0.898	
G-A-A-G	0.118	0.139	0.061	0.157	0.009	0.119	0.947	
A-C-G-T	0.088	0.074	0.160	0.072	0.205	0.078	0.447	
G-C-G-G	0.032	0.030	0.728	0.028	0.637	0.032	0.998	
G-C-A-G	0.015	0.012	0.452	0.014	0.794	0.010	0.374	
Global <i>P</i> value	b		0.220		0.136		0.786	
PINK1								
T-G-C-T	0.087	0.067	0.033	0.066	0.092	0.068	0.153	
T-A-A-T	0.265	0.285	0.182	0.286	0.307	0.285	0.344	
C-G-A-T	0.021	0.029	0.111	0.032	0.086	0.025	0.543	
C-G-C-C	0.288	0.290	0.924	0.298	0.634	0.280	0.716	
C-G-A-C	0.031	0.030	0.781	0.031	0.963	0.028	0.694	
T-G-A-C	0.308	0.300	0.617	0.288	0.340	0.313	0.784	
Global <i>P</i> value	b		0.145		0.218		0.672	

Table S2. Association of the *PARL* and *PINK1* haplotypes with leprosy in Han Chinese (527 cases versus 3093 unaffected control individuals)

^a The order of *PARL* SNPs in each haplotype is rs1061593 - rs2305666 - rs12631031 - rs7653061 and *PINK1* SNPs in each haplotype is rs10916832 - rs10916840 - rs1043424 - rs4704. Three SNPs in *PARL* (rs10937153) and *PINK1* (rs1573132 and rs607254) were excluded from the analysis due to deviation from the Hardy-Weinberg equilibrium in the Yuxi control individuals (*P* < 0.05). SNPs rs650616 and rs3738140 were excluded because of no genotype information in the reported samples ¹.

^b Global *P* value was calculated by using the Chi-square test.

Chr.	Position	SNP ID ^a	Gene	Function	Ref.	Alt.	Residue change	Damaging predication	Allele counts in 80 leprosy	Allele counts in	<i>P</i> -value ^c	OR
chr3	183547346	rs371236566	PARL	utr-3	С	Т	_	-	1/160	NA	NA	NA
chr3	183558402	rs3732581	PARL	missense	C	G	p.V212L	Tolerated	44/160	99/206	6.434×10 ⁻⁵	0.410
chr3	183560195	rs13091	PARL	synonymous	А	G	p.H216	-	45/160	99/206	1.058×10 ⁻⁴	0.423
chr1	20960230	rs45530340	PINK1	synonymous	С	Т	p.L63	-	30/150	14/206	2.668×10 ⁻⁴	3.429
chr1	20960442	rs117438827	PINK1	intron	G	А	-	-	3/150	7/206	0.528	0.580
chr1	20960453	rs377219724	PINK1	intron	G	С	-	-	3/152	1/206	0.316	4.128
chr1	20964328	rs2298298	PINK1	intron	А	G	-	-	137/160	171/206	0.565	1.219
chr1	20964332	rs371971165	PINK1	spliceSite	С	Т	-	-	1/160	NA	NA	NA
chr1	20970949	rs199769220	PINK1	intron	Т	С	-	-	1/160	1/206	1.000	1.289
chr1	20972048	rs3131713	PINK1	intron	G	А	-	-	131/160	171/206	0.783	0.925
chr1	20972111	rs3738136	PINK1	missense	G	А	p.A340T	Tolerated	38/160	54/206	0.628	0.877
chr1	20975154	rs370380947	PINK1	intron	G	А	-	-	1/160	NA	NA	NA
chr1	20975463	rs2298300	PINK1	intron	Т	С	-	-	6/160	9/206	0.798	0.853
chr1	20976950	rs527565484	PINK1	synonymous	А	С	p.A504	-	1/160	NA	NA	NA
chr1	20977000	rs1043424	PINK1	missense	А	С	p.N521T	Tolerated	48/160	85/206	0.029	0.610
chr1	20977154		PINK1	synonymous	С	G	p.L572	-	1/160	NA	NA	NA
chr1	20977221	rs686658	PINK1	utr-3	А	Т	-	-	134/160	171/206	0.888	1.055
chr1	20977224	rs115768147	PINK1	utr-3	G	А	-	-	6/160	9/206	0.798	0.853
chr6	161807855	rs1801582	PARK2	missense	С	G	p.V231L	Tolerated	29/160	15/206	0.002	2.819
chr6	161815583	rs3924680	PARK2	intron	С	Т	-	-	4/160	NA	NA	NA
chr6	161966429	rs566245804	PARK2	intron	С	G	-	-	1/160	NA	NA	NA

Table S3. The list of variants in the exon and flanking regions of the PARL, PINK1 and PARK2 genes in 80 leprosy patients underwent NGS

chr6	162137099	rs112078090	PARK2	intron	CATCTT	С	-	-	32/160	38/206	0.789	1.105
chr6	162137147	rs77332950	PARK2	intron	С	Т	-	-	3/160	11/206	0.104	0.339
chr6	162199393	rs12207168	PARK2	intron	А	G	-	-	69/160	76/206	0.238	1.297
chr6	162622197	rs1801474	PARK2	missense	С	Т	p.S167N	Tolerated	50/160	75/206	0.319	0.794
chr6	162622304	rs4709583	PARK2	intron	А	G	-	-	159/160	201/206	0.237	3.955
chr6	162863033	rs9347641	PARK2	intron	С	А	-	-	35/160	23/206	0.006	2.228
chr6	162864317	rs2075923	PARK2	intron	А	G	-	-	29/160	31/206	0.478	1.250
chr6	162864528	rs201760977	PARK2	intron	А	G	-	-	1/160	1/206	1.000	1.289

Chr, Chromosome; Ref, Reference allele; Alt, Alternate allele; CHB, 103 Han Chinese from Beijing in the 1000 Genomes dataset ²; OR, Odds ratio; NA, no data available.

^a Among the 13 SNPs that were genotyped in this study, only one missense variant (rs1043424) was captured by the NGS.

^b Missense variants are rated as damaging when at least two of five prediction algorithms (SIFT ^{3,4}, PolyPhen2 HumDiv, PolyPhen2 HumVar ⁵, LRT ⁶ and MutationTaster ⁷) suggesting a potential deleterious effect, otherwise the variants are rated as tolerated.

^c *P*-values were calculated by using the Fisher's exact test.

Table S4. mRNA expression levels of the PARL and PINK1 genes in leprosy skin lesions

Gene	Control vs. MB			Control vs. PB			Control vs	Control vs. R1			Control vs. R2		
_	adj. P. Val	P-Value	logFC	adj.P.Val	P-Value	logFC	adj.P.Val	P-Value	logFC	adj.P.Val	P-Value	logFC	
PARL	2.38E-03	8.19E-04	0.300	8.02E-02	4.65E-02	0.141	5.07E-03	2.52E-03	0.234	1.53E-02	7.43E-03	0.254	
PINK1	1.51E-04	3.23E-05	-0.496	6.49E-05	1.13E-05	-0.671	2.49E-06	5.69E-07	-0.675	3.97E-05	7.44E-06	-1.043	

Note: The microarray expression data were retrieved from GEO according to accession series GSE74481

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74481)⁸. This dataset contains skin biopsies of 24 MB (10 mid-borderline leprosy [BB] + 10 borderline lepromatous [BL] + 4 lepromatous [LL]), 20 PB (10 tuberculoid [TT] + 10 borderline-tuberculoid [BT]), 14 type I reaction (R1), 10 type II reaction (R2) patients, and 9 healthy individuals.

adj. P. Val - adjusted P-value; logFC -log2 Fold Change

Gene	Gene	Gene	Gene	Gene	Gene
ADAMTSL1	CCL5	HLA-DMA	IL4R	MASP2	RAB32
AGER	CD209	HLA-DMB	IL5RA	MBL2	RASSF8
AGPATI	CDC42BPG	HLA-DOA	IL6	MCCD1	RDBP
AIF1	CDSN	HLA-DOB	IL6R	MEN1	RGNEF
ALS2CL	CFB	HLA-DPA1	IRGM	MICA	RIPK2
APOE	CFH	HLA-DPB1	KIR2DL1	MICB	RNF5
APOH	CLIC1	HLA-DQA1	KIR2DL2	MIR125A	SDHD
APOM	COL3A1	HLA-DQA2	KIR2DL3	MIR146A	SFMBT2
ATF6B	CRI	HLA-DQB1	KIR2DL4	MIR196A2	SFTA2
ATP6V1G2	CSF2RB	HLA-DRA	KIR2DL5A	MIR223	SKIV2L
BAT1	CSNK2B	HLA-DRB1	KIR2DL5B	MRC1	SLC11A1
BAT2	CTLA4	HLA-DRB6	KIR2DP1	MSH5	SLC44A4
BAT3	CUBN	HLA-DRB9	KIR2DS1	NCR3	<i>SNCA</i>
BAT4	CYP21A2	HLA-F	KIR2DS2	NEBL	STK19
BAT5	CYP2E1	HLA-G	KIR2DS3	NFKBIL1	TAP1
BATF	DDAH2	HSPA1A	KIR2DS4	NINJI	TAP2
BATF3	DDX39B	HSPA1B	KIR2DS5	NLRP1	TCF19
BCHE	DECI	HSPA1L	KIR3DL1	NLRP3	TGFB1
BCL10	DEFB1	ICAMI	KIR3DL2	NOD1	TGFBR1
BRD2	DOM3Z	IFLTD1	KIR3DL3	NOD2	TGFBR2
BTNL2	EGFL8	IFNG	KIR3DP1	NOS2	TIRAP
Cl3orf31	EHMT2	IFNGR1	KIR3DS1	NOS3	TLR1
<i>C2</i>	ERBB2	IL10	LACCI	NOTCH4	TLR2
С3	FAM89A	IL10RA	LAMA2	NOVA2	TLR4
C4B	FCN1	IL10RB	LGALS3	OCA2	TNF
C6orf10	FCN2	IL12B	LRRK2	OPA1	TNFRSF25
C6orf15	FKBPL	IL12RB1	LSM2	PACRG	TNFSF15
C6orf25	FLOTI	IL12RB2	LST1	PARK2	TNFSF8
C6orf26	GNG2	IL13	LTA	PBX2	TNXB
C6orf27	GNL1	IL13RA1	LTA4H	PKD1L1	TOLLIP
C6orf47	GPR182	IL17A	LTB	PPT2	TRIM10
C6orf48	GPSM3	IL17F	LY6G5B	PRKCQ	TRIM67
C7orf44	GSTM1	IL18R1	LY6G5C	PRRT1	VARS
C7orf69	GTF2H4	IL18RAP	LY6G6C	PSMB8	VARS2
CCDC122	HCP5	ILIRI	LY6G6D	PSMB9	VDR
CCDC88B	HLA - A	IL2	LY6G6F	PSORSICI	WASF5P
CCHCR1	HLA-B	IL23R	MAP4K2	PSORS1C2	ZBTB12
CCL3	HLA-C	IL4	MAPT	PTPN22	ZNF608

Table S5. Reported leprosy susceptible genes used for constructing the PPI network

Note - The reported 227 leprosy susceptible genes were taken from our previous study (Ref. ⁹ and references therein). The newly identified leprosy risk gene *OPA1* ¹⁰ was also included in the analysis.

CHR1	SNP1	CHR2	SNP2	OR_INT	STAT	P-value *
1	rs10916832	3	rs414237	1.488	6.547	0.011
1	rs650616	3	rs7624750	0.640	9.258	0.002
1	rs650616	3	rs9851685	0.700	7.066	0.008
1	rs650616	3	rs4443116	0.756	4.713	0.030
1	rs3738140	12	rs1873613	0.540	4.363	0.037
1	rs3738140	12	rs1427267	0.520	5.295	0.021
1	rs3738140	12	rs7298930	0.542	5.138	0.023
1	rs3738140	12	rs3761863	0.556	4.155	0.042
3	rs2305666	12	rs732374	1.360	5.000	0.025
3	rs9838374	12	rs34778348	4.632	4.848	0.028
3	rs7646539	3	rs100774	0.669	5.692	0.017
3	rs7624750	3	rs100774	0.662	5.013	0.025
3	rs100774	3	rs9851685	0.582	10.080	0.001
3	rs100774	3	rs414237	1.591	6.204	0.013
3	rs100774	3	rs4443116	0.617	8.733	0.003

Table S6. SNP-SNP interaction analysis of *PARL*, *PINK1*, *LRRK2* and *OPA1* in 527 leprosy patients and 583 controls

CHR1, Chromosome of the first SNP; SNP1, Identifier for the first SNP; CHR2, Chromosome of the second SNP; SNP2, Identifier for the second SNP; OR_INT, Odds ratio for interaction; STAT, Chi-square statistic, 1df; *P-value*, asymptotic *P*-value.

* *P*-values of the Bonferroni correction for multiple tests. The significance of the *P*-value should be 1.543×10^{-4} , (324 tests in this analysis). Only *P*-value less than 0.05 were shown here. The SNP information of *LRRK2* and *OPA1* were taken from our previous studies ^{10,11}.

SNP	Location	Primer (5'-3')
rs1061593 ^a	tagSNPs,	Forward: ACGGGCTTCCACTTCACA
	3'UTR, PARL	Reverse: TAAATGTGAGTCATTCAATCCCA
		Probe: ct(gact) ₈ ACAGACCTCCTTATGGCCAAGATGAGCCTC
rs2305666 ^a	tagSNPs,	Forward: TCTAAAGAGCAGCACATTTTCTAG
	Intron, PARL	Reverse: ACCTATTATTGGGGACATAAGTAACT
		Probe: t(gact)7AGTTTACATGCTGCACATTTCTAGGTGAGC
rs10937153 ^a	tagSNPs,	Forward: AGGTATTCCTCTACTTGTTGAATTAAAA
	Intron, PARL	Reverse: TTATTGAAATCAGTCCTTATTGGC
		Probe: t(gact) ₆ ATTCCTCCAGTCTCTGTAGGCAACAGGCAA
rs12631031 "	tagSNPs,	Forward: TATICITIGATACATGAAGIGGATIT
	Intron, PARL	Reverse: TTATCCTCATTTCTCAGATGGG
7(520(1) ³		Probe: (gact) ₁₁ ATTCCCGAATCCACCCAGTTCTAGCTGTGT
rs/653061	tagSNPs,	Forward: ACCTCTTCCAGGAGGCCT
	5'UTR, PARL	Reverse: TTGCAGAGATAAGCATAAGCG
1001(020 8		Probe: act(gact) ₉ CCTTTCCCAGACCTCCACTCCAATTTAGAT
rs10916832	tagSNPs,	Forward: IGGGCIGGACCIAACIGC
	3'UTR, CDA	Reverse: AGTAGCTACIGAGAAAACCCTTTGT
		Probe: act(gact) ₂ TAACCATCCTAGAGTGTGTTTTTGTCTCAT
rs10916840 ^a	tagSNPs,	Forward: TGCGTGTGTGTGTGTTCTGTG
	5'UTR,	Reverse: TTTTGAAGACCCCAAGACAA
	PINK1	Probe: (gact) ₁ CTATGCCATTAAACAAACGGTGTGGCTTTG
rs1043424 ^a	tagSNPs,	Forward: AAATGTGCTTCATCTAAGCCTC
	Exon, PINK1	Reverse: AACACTTCTCTGTGAGCCTGTT
		Probe: GGTGAACATATTCTAGCCCTGAAGA
rs1573132	tagSNPs,	Forward: CTATTGCCTAAATCAGCGTCA
	3'UTR,	Reverse: GGTGGGAATCACTGAAATG
	PINK1	Probe: ct(gact) ₉ CAACTGAGCTGTTCTAGTTTTCTCT
rs650616	tagSNPs,	Forward: TAGTTTTCTCTTCCCCAGCA
	3'UTR,	Reverse: ATACAAGAAAGTTGTTGTTGCTAGTAGA
	PINK1	Probe: (gact) ₄ AGCACTGTCATCTAGATTTTCCATTTCAGT
rs607254	tagSNPs,	Forward: CAGCAATGAGGAGGGTGTT
	Intron,	Reverse: AGGCGTGGCAGCTTTTCC
	DDOST	Probe: t(gact) ₈ CATGTGGATACTGGGAACAAAACGA
rs3738140	tagSNPs,	Forward: CTCTTGGCTTTTGGCTAAGC
	Intron,	Reverse: AAAACGGCTGTCATTGACC
	DDOST	Probe: t(gact) ₁₃ TGCCATATGCCCCTGAAACCTGGAA
rs4704 ^a	tagSNPs,	Forward: TTGGAGGCAACATCAACG
	Exon,	Reverse: ACTCACCAATGTCGGAGCT
	DDOST	Probe: t(gact)5CGTGGAGACCATCAGTGCCTTTATTGACGG

Table S7. SNaPshot primers for genotyping 5 PARL SNPs and 8 PINK1 SNPs

Note: (GACT)n, n repeats of "GACT"

^a These primers for the SnaPShot assay were taken from our recent study ¹.

Figure S1. Power estimate for the case-control association analysis (assuming odds ratio value as 1.6; case, n = 527; control, n = 583). Statistical power was computed under the gene only hypothesis and the dominant model by using the Quanto software ¹².

Figure S2. PC map of Han regional populations. It contained the leprosy patient (Lep_case), Yuxi control (Lep_CN) population, reported Han Chinese populations (Hunan and Shanghai)¹ and other populations from HapMap database (CHB, CHD, JPT and CEU) ¹³. CHB: Han Chinese in Beijing, China (n=136); CHD: Chinese in Metropolitan Denver, Colorado (n=109); JPT: Japanese in Tokyo, Japan (n=113); CEU: Utah residents with Northern and Western European ancestry (n=113).

Figure S3. mRNA expression pattern of *PARL* in human tissues. *PARL* is widely expressed in human tissues, especially in immune cells. Data were retrieved from the BioGPS (http://biogps.org/#goto=welcome)¹⁴.

Figure S4. mRNA expression pattern of *PINK1* in human tissues. *PINK1* is widely expressed in human tissues, especially in central nervous system. Data were retrieved from the BioGPS (http://biogps.org/#goto=welcome)¹⁴.

Network legend

- Physical interactions
- Co-expression
- Pathway
- Co-localization
- Genetic interactions
- Shared protein domains
- Predicted

Figure S5. Protein interaction network of PARL, PINK1 and reported leprosy susceptibility genes (Ref. ⁹ and references therein; Table S5) by using the GeneMANIA prediction server (http://www.genemania.org/)¹⁵. The PARL and PINK1 proteins were marked by red arrows.

Figure S6. Linkage disequilibrium plot of the *PARL* SNPs based on CHB, HapMap, Phase 3¹³. SNPs selected for genotyping in this study were marked in red box.

Figure S7. Linkage disequilibrium plot of the *PINK1* SNPs based on CHB, HapMap, Phase 3¹³. SNPs selected for genotyping in this study were marked in red box.

Supplementary References

- 1 Li, X. *et al.* Common variants of the PINK1 and PARL genes do not confer genetic susceptibility to schizophrenia in Han Chinese. *Molecular genetics and genomics : MGG* **290**, 585-592, doi:10.1007/s00438-014-0942-1 (2015).
- 2 1000 Genomes Project Consortium *et al.* A global reference for human genetic variation. *Nature* **526**, 68-74, doi:10.1038/nature15393 (2015).
- 3 Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nature protocols* **4**, 1073-1081, doi:10.1038/nprot.2009.86 (2009).
- 4 Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. *Nucleic acids research* **31**, 3812-3814 (2003).
- 5 Adzhubei, I. A. *et al.* A method and server for predicting damaging missense mutations. *Nature methods* **7**, 248-249, doi:10.1038/nmeth0410-248 (2010).
- 6 Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome research **19**, 1553-1561, doi:10.1101/gr.092619.109 (2009).
- Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: mutation prediction for the deep-sequencing age. *Nature methods* 11, 361-362, doi:10.1038/nmeth.2890 (2014).
- 8 Belone Ade, F. *et al.* Genome-Wide Screening of mRNA Expression in Leprosy Patients. *Frontiers in genetics* **6**, 334, doi:10.3389/fgene.2015.00334 (2015).
- Zhang, D.-F., Wang, D., Li, Y.-Y. & Yao, Y.-G. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile. *Journal of dermatological science* 82, 18-27, doi:10.1016/j.jdermsci.2016.01.001 (2016).
- 10 Xiang, Y.-L., Zhang, D.-F., Wang, D., Li, Y.-Y. & Yao, Y.-G. Common variants of OPA1 conferring genetic susceptibility to leprosy in Han Chinese from Southwest China. *Journal of dermatological science* **80**, 133-141, doi:10.1016/j.jdermsci.2015.09.001 (2015).
- 11 Wang, D. *et al.* Association of the LRRK2 genetic polymorphisms with leprosy in Han Chinese from Southwest China. *Genes and immunity* **16**, 112-119, doi:10.1038/gene.2014.72 (2015).
- 12 Gauderman, W. J. Sample size requirements for matched case-control studies of gene-environment interaction. *Stat Med* **21**, 35-50, doi:10.1002/sim.973 (2002).
- 13 International HapMap, C. The International HapMap Project. *Nature* **426**, 789-796, doi:10.1038/nature02168 (2003).
- Wu, C., Jin, X., Tsueng, G., Afrasiabi, C. & Su, A. I. BioGPS: building your own mash-up of gene annotations and expression profiles. *Nucleic acids research* 44, D313-316, doi:10.1093/nar/gkv1104 (2016).
- Warde-Farley, D. *et al.* The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. *Nucleic acids research* 38, W214-220, doi:10.1093/nar/gkq537 (2010).