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Genome-wide association study followed
by trans-ancestry meta-analysis identify 17
new risk loci for schizophrenia
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Abstract

Background: Over 200 schizophrenia risk loci have been identified by genome-wide association studies (GWASs).
However, the majority of risk loci were identified in populations of European ancestry (EUR), potentially missing
important biological insights. It is important to perform 5 GWASs in non-European populations.

Methods: To identify novel schizophrenia risk loci, we conducted a GWAS in Han Chinese population (3493 cases and
4709 controls). We then performed a large-scale meta-analysis (a total of 143,438 subjects) through combining our results
with previous GWASs conducted in EAS and EUR. In addition, we also carried out comprehensive post-GWAS analysis,
including heritability partitioning, enrichment of schizophrenia associations in tissues and cell types, trancscriptome-wide
association study (TWAS), expression quantitative trait loci (eQTL) and differential expression analysis.

Results: We identified two new schizophrenia risk loci, including associations in SHISA9 (rs7192086, P = 4.92 × 10-08) and
PES1 (rs57016637, P = 2.33 × 10−11) in Han Chinese population. A fixed-effect meta-analysis (a total of 143,438 subjects)
with summary statistics from EAS and EUR identifies 15 novel genome-wide significant risk loci. Heritability partitioning
with linkage disequilibrium score regression (LDSC) reveals a significant enrichment of schizophrenia heritability in
conserved genomic regions, promoters, and enhancers. Tissue and cell-type enrichment analyses show that schizophrenia
associations are significantly enriched in human brain tissues and several types of neurons, including cerebellum neurons,
telencephalon inhibitory, and excitatory neurons. Polygenic risk score profiling reveals that GWAS summary statistics from
trans-ancestry meta-analysis (EAS + EUR) improves prediction performance in predicting the case/control status of our
sample. Finally, transcriptome-wide association study (TWAS) identifies risk genes whose cis-regulated expression change
may have a role in schizophrenia.

Conclusions: Our study identifies 17 novel schizophrenia risk loci and highlights the importance and necessity of
conducting genetic study in different populations. These findings not only provide new insights into genetic etiology of
schizophrenia, but also facilitate to delineate the pathophysiology of schizophrenia and develop new therapeutic targets.

Keywords: Schizophrenia, GWAS, Han Chinese, PRS, TWAS, Meta-analysis

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: luoxiongjian@mail.kiz.ac.cn
1Key Laboratory of Animal Models and Human Disease Mechanisms of the
Chinese Academy of Sciences & Yunnan Province, Kunming Institute of
Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
2Kunming College of Life Science, University of Chinese Academy of
Sciences, Kunming 650204, Yunnan, China
Full list of author information is available at the end of the article

Liu et al. BMC Medicine          (2021) 19:177 
https://doi.org/10.1186/s12916-021-02039-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-021-02039-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:luoxiongjian@mail.kiz.ac.cn


Background
Schizophrenia (SCZ) is a devastating mental disorder
that affects about 0.5–1% of the world’s population [1].
The main symptoms of SCZ include positive symptoms
(hallucinations and delusions), negative symptoms (an-
hedonia, alogia, and avolition), and cognitive impair-
ments (impaired working memory and executive
function) [2]. Due to the high mortality and considerable
morbidity [3], SCZ imposes substantial economic burden
on society and becomes a major threat to global health
[4]. The pathophysiology of SCZ remains largely un-
known. Nevertheless, lines of evidence indicate that SCZ
has a strong genetic component. The heritability of SCZ
was estimated around 0.80 [5], implying the major role
of the inherited variants in SCZ. To dissect the genetic
basis of SCZ, great efforts have been made and signifi-
cant progresses have been achieved. Low-frequency vari-
ants such as structural variants [6], copy number
variations [7–10], rare [11], and de novo mutations [12–
16] were reported to be associated with SCZ. In
addition, GWASs have identified over 200 risk loci that
showed robust associations with SCZ [17–27].
Although recent large-scale studies have provided im-

portant insights into the genetic etiology of SCZ, chal-
lenges remain in dissecting the genetic architecture of
SCZ. First, the majority of risk loci were identified in
populations of European ancestry [21, 26]. Considering
the diverse differences of allelic frequency and linkage
disequilibrium pattern in different continental popula-
tions [28], performing GWAS in non-European popula-
tions will provide new insights into genetic etiology of
SCZ. Second, despite the fact that a recent GWAS meta-
analysis in populations of East Asian ancestry (EAS) re-
vealed comparative genetic architecture of SCZ between
populations of European ancestry (EUR) and East Asian
ancestry (EAS) (genetic correlation between EAS and
EUR is 0.98 ± 0.03), this study also showed population-
specific associations [24]. For example, Lam et al. found
that a large proportion of genome-wide significant vari-
ants identified in EAS showed dramatic differences in al-
lelic frequency between EAS and EUR [24], further
indicating the importance of conducting GWAS in non-
European populations. Third, accumulating data suggest
that a large proportion of risk variants contribute to
SCZ through modulating gene expression [29–31].
Therefore, it is important to pinpoint the potential target
genes of the identified risk variants. To address these
challenges, we firstly conducted a GWAS in Han Chin-
ese population (N = 8202). We then performed a large-
scale meta-analysis (a total of 143,438 subjects) through
combining our results with summary statistics from pre-
vious GWASs conducted in EAS and EUR (i.e., summary
statistics-based meta-analysis, fixed-effect model was
used) [24]. We also performed a transcriptome-wide

association study (TWAS) to pinpoint the potential tar-
get genes of the identified risk variants and explored the
potential tissue and cell type that the identified risk vari-
ants and genes may exert their biological effects.

Methods
Study subjects
SCZ cases were from inpatient and outpatient services
of collaborating mental health centers of China. Part of
cases has been described in our previous studies for can-
didate gene analyses [32–34]. Diagnosis was based on
Diagnostic and Statistical Manual of mental disorders
(DSM-IV) criteria, with the use of Structured Clinical
Interview for DSM-IV (SCID) Axis I Disorders. All rele-
vant and detailed information (including onset of SCZ,
first onset or remitted, symptoms and chief complaint,
duration course, family history of psychiatric disorders,
medication history) were carefully evaluated by at least
two independent experienced psychiatrists to reach a
consensus DSM-IV diagnosis. Detailed information
about diagnosis had been described in previous studies
[33, 34]. The average age of cases and controls were
35.67 ± 10.29 and 28.82 ± 6.83 years, respectively.
37.45% cases and 54.53% controls were males, respect-
ively. All participants provided written informed con-
sents. This study was approved by the Ethical
Committee and internal review board of the Kunming
Institute of Zoology (No: SMKX-20191215-07) and par-
ticipating hospitals and universities (including the Sec-
ond Affiliated Hospital of Xinxiang Medical University
and Xi’an Jiaotong University). The samples were re-
cruited from 2010 to 2018.

DNA extraction and genotyping
Genomic DNA was extracted from the peripheral blood
with the use of QIAamp DNA blood mini kit (Cat. No:
51106). We used two types of genotyping platforms (ar-
rays), including Illumina ASA (BeadChip Array Asian
Screening Array-24+v1.0 HTS ASAMD-24v1-0) and
GSA (BeadChip Array Global Screening Array-24+v2.0
HTS GSA v2.0+Multi-Disease). For ASA array (includ-
ing 743,722 variants), 56.7% of the variants are common
variants (with minor allele frequency > 0.05), 30.8% are
low-frequency variant (with minor allele frequency be-
tween 0.01 and 0.05), and 12.5% are rare variants (minor
allele frequency < 0.01). ASA array includes a broad
spectrum of pharmacogenomics markers (N = 5588) ob-
tained from CPIC guidelines (www.cpicpgx.org) and the
PharmGKB database (www.pharmgkb.org). In addition,
the ASA array contains about 50,000 SNPs selected from
ClinVar database (www.ncbi.nlm.nih.gov/clinvar). For
GSA array (N = 759,993 variants), 54.4% of the variants
are common variants (with minor allele frequency >
0.05), 18.1% are low-frequency variant (with minor allele
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frequency between 0.01 and 0.05), and 27.4% are rare
variants (minor allele frequency < 0.01). Similar with
ASA array, the GSA array includes multiple expert cu-
rated variants obtained from ClinVar (www.ncbi.nlm.
nih.gov/clinvar), PharmGKB (www.pharmgkb.org),
NHGRI (www.genome.gov/), and other databases. More
details about the ASA and GSA arrays can be found in
the official Illumina website (https://www.illumina.com/
products/by-type/microarray-kits). Genotyping assays
were conducted at Guoke Biotechnology Co., LTD in
Beijing (www.bioguoke.com).

Quality control
We conducted quality control as previously described
[23, 24, 35], with some minor revisions. The main con-
sideration is to include more subjects and variants under
the premise of ensuring data quality. The individual-
level quality control (QC) was processed as follows: (1)
Samples with genotype missing rate > 0.03 were ex-
cluded; (2) Samples with a heterozygosity (calculated by
plink 1.9 –het command) deviated ± 3 stand deviation
(s.d.) from the mean heterozygosity of all samples were
excluded; (3) Related samples were inferred by KING
software (http://people.virginia.edu/~wc9c/KING/) [36].
We used –related command implemented in KING to
infer the potential kinship coefficients with 3rd degree.
After inferring relatedness between samples, KING pro-
gram exported related and unrelated samples. Related
samples were then excluded. (4) We checked the sex of
samples by using Plink (v1.09) (with --check-sex com-
mand). Samples with inconsistent sex information were
excluded. We excluded samples if their sex estimated by
genotype data and medical record information were in-
consistent. In addition, we also excluded samples whose
sex could not be accurately predicted based on the geno-
type data.
The SNP-level QC are as follows: (1) Excluding SNPs

with a call rate < 97%; (2) As described in the study of
Lam et al. [24], we excluded SNPs with a significant de-
viation from Hardy-Weinberg equilibrium (P < 1.0 ×
10−6 in controls and P < 1.0 × 10−10 in cases); (3) Ex-
cluding SNPs with a minor allele frequency (MAF) <
0.01; (4) Only biallelic SNPs were retained for further
analysis. The QCs were performed by Plink 1.9 software
[37]. Our analysis started in March 2020 and finished in
May 2021.

Principal component analysis (PCA)
We performed principal component analysis (PCA) to
assess population stratification and exclude the outliers.
The subjects from the 1000 Genomes project (including
CHB (Han Chinese in Beijing, China), CHS (Southern
Han Chinese), JPT (Japanese in Tokyo, Japan), YRI (Yor-
uba in Ibadan, Nigeria), and CEU (Utah residents with

northern and western European ancestry)) [38] were
used as references and PCA was performed with GCTA
software [39]. Samples that were not clustered with sub-
jects of Han Chinese ancestry were excluded. We then
used the Smartpca program to calculate principal com-
ponents as covariates to correct potential population
stratification [40, 41]. We excluded the MHC region
(chr6: 25-34MB) when performing PCA. Five PCA itera-
tions were run and top 20 principal components (PCs)
were calculated. Samples that were away from 6 stand-
ard deviations (s.d.) of the mean of each PC were ex-
cluded. After stringent quality control, 3493 cases and
4709 controls were retained for GWAS.
For each group (ASA subgroup 1 and subgroup 2,

GSA), the top 20 PCs were calculated. The PCs were
calculated as covariates to correct potential population
stratification for each group (ASA subgroup 1 and sub-
group 2, GSA), respectively. As suggested by Price et al.
[41], we included a variable number of PCs as covariates
to perform logistic regression analysis in each group
(ASA subgroup1, ASA subgroup2, GSA). We used gen-
omic control inflation factor (λGC) to estimate the effect
of the number of PCs on population stratification adjust-
ment [41, 42]. The selection of the final number of PCs
was mainly based on the following criteria [43]: (1) the
λGC should as close to 1 as possible (indicating popula-
tion stratification is well controlled); (2) when including
more PCs, the λGC did not change significantly (indicat-
ing that the number of PCs selected is enough to adjust
population stratification). Based on these criteria, we fi-
nally selected 10 PCs for ASA subgroup 1, 4 PCs for
ASA subgroup 2, and 12 PCs for GSA samples
respectively.

Genotype imputation
The imputation of the genotypes was performed by
Eagle [44] and minimac3 [45]. The Eagle was used for
phasing the genotype data of each chromosome. The ref-
erence panel from the 1000 Genomes project (Phase 3)
[38] was downloaded from the minimac3 website
(https://genome.sph.umich.edu/wiki/Minimac3). The im-
puted data were further processed with the following
QC steps: (1) SNPs with an imputation quality score <
0.8 were excluded; (2) SNPs with a MAF < 0.01 were ex-
cluded; (3) SNPs that significantly deviated from the
Hardy-Weinberg equilibrium (P < 1 × 10−6 in controls,
P < 1 × 10−10 in cases) were excluded; (4) Only SNPs
with a genotype imputation rate > 97% were remained;
(5) Only biallelic SNPs were included for further associ-
ation analysis. After QC, the total number of SNPs in-
cluded in GWAS analysis was 4,724,225 (for ASA
arrays) and 5,107,135 (for GSA arrays). The number of
overlapping SNPs between the two platforms is 3,937,
527. To make our QC procedures more clear and easy
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to follow, we provided the detailed information about
QC (to list all pre- and post-imputation QC steps with
excluded and remaining SNPs and participants after
each step) in Additional file 1: Figure S1.

GWAS and meta-analysis
As our samples were genotyped with Illumina ASA and
GSA Chip arrays, to avoid potential effects of different
array platforms on our analysis, we performed genome-
wide association analysis separately. We firstly per-
formed genetic association analysis in our samples (ASA
subgroup 1, ASA subgroup 2, GSA, respectively) by
using logistic regression. This association analysis was
based on genotype data of each group (i.e., ASA sub-
group 1, ASA subgroup 2, GSA), with PCs included as
covariate. The results from these three genome-wide
summary statistics were then meta-analyzed (summary
statistics-based meta-analysis, fixed-effect model was
used). GWAS were performed by Plink (v1.09) software
[37]. We further performed a summary statistics-based
meta-analysis in East Asian populations through com-
bining the results of our study and GWAS summary sta-
tistics (only EAS were used) from a recent study by Lam
et al. (including 22,778 case and 35,362 controls) [24].
Finally, we carried out a trans-ancestry meta-analysis
(summary statistics-based, fixed effect model) through
combining our results with the summary statistics from
East Asians and Europeans (containing 56,418 cases and
78,818 controls) [24, 26].

Defining of independent risk loci and new loci
identification
To identify independent risk loci, we used FUMA [46]
to clump the association results (with the default param-
eters). Different reference panels were used for clump-
ing. For the meta-analysis in EAS, subjects of East Asian
ancestry from the 1000 Genomes project [38] were used.
For the meta-analysis of EAS and PGC2 [24], subjects of
European ancestry from the 1000 Genomes project [38]
were used. The clumping processes were as follows: The
minimum r2 threshold for independent significant SNPs
was set to 0.6, which was used to define the boundaries
of the genomic risk locus. When independent significant
SNPs were defined in a locus, these SNPs were further
processed to identify the lead SNP for each locus. The
minimum r2 for defining lead SNPs was set to r2 = 0.1.
The LD blocks of independent significant SNPs that <
250 kb were merged into a single genome locus. More
details about LD clump can be found in FUMA website
(https://fuma.ctglab.nl/tutorial). Visualization of associ-
ation results of interest SNPs and its nearby variants
were generated with locuszoom [47] (http://locuszoom.
org/genform.php?type=yourdata).

We compared the genome-wide significant (GWS)
loci identified in this study and published SCZ GWAS
[21, 23, 24, 26], and we also included GWASs listed
in GWAS catalog database in FUMA [46]. We used
following approaches for risk loci comparison: (1) If
the published SCZ GWAS provide GWS index SNPs
and its corresponding genomic region (chromosomal
coordinates), we overlapped genomic region of our
GWS loci with these published risk loci. Non-
overlapping loci were defined as new loci; (2) If the
published SCZ GWAS only list GWS index SNPs, the
newly identified risk loci (by us) should have no over-
lap with these GWS index SNPs, the index SNPs of
the newly identified risk loci (by us) should also not
be in linkage disequilibrium with the reported GWS
index SNPs (R2 < 0.1); (3) GWAS catalog database
implemented in FUMA [46] were also used to identify
new SCZ GWS loci.

Polygenetic risk score profiling
Polygenetic risk score profiling was performed by
PRSice2 [48]. The PRS scores derived from training
datasets were used to predict the case-control status of
our samples. And the samples included in this study
were used as target sample. We used classic clumping
and threshold method. We run PRS using default pa-
rameters in PRSice2 [48]. The detailed clumping param-
eters of PRS calculation were as follows: --clump-kb 250,
--clump-p 1.0, --clump-r2 0.10. Summary statistics from
EAS [24], PGC2 EUR [24], EAS + EUR [24], and CLO-
ZUK+PGC2 [21] were used as training datasets in PRS
analysis. And we set 10 P value thresholds (5 × 10−8, 5 ×
10−5, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1) to analyze
the phenotypic variance explained at different P value
cutoffs.

Tissue and cell-type enrichment analysis
To explore if schizophrenia associations were
enriched in specific human tissues, we performed tis-
sue enrichment analysis by using MAGMA (Version
1.08) [49], which is implemented in FUMA software
(Version 1.3.6a) [46]. Briefly, gene expression data of
different human tissues (RNA sequencing data from
the Genotype-Tissue Expression (GTEx) [50] consor-
tium) were used to identify the genes that differen-
tially expressed in a specific tissue. Based on the
GWAS P values, MAGMA quantifies the degree of
association between a gene and schizophrenia (i.e.,
obtain a gene-level P value) by using a multiple linear
principal component regression model. MAGMA then
tests if schizophrenia associations were enriched in
the specifically expressed genes in a specific tissue.
More detailed information about tissue enrichment
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analysis can be found in FUMA website (https://fuma.
ctglab.nl/).
Cell-type enrichment analysis was also performed

using MAGMA (Version 1.08) [49]. Single-cell RNA
sequencing data from the mouse central nervous sys-
tem (CNS) [51] were downloaded and processed as
described in Bryois et al. [52]. Briefly, a total of 160,
769 high-quality single-cell RNA-seq data were ana-
lyzed. Human genes were mapped to orthologous
mouse genes (one to one) based on MGI annotations
(http://www.informatics.jax.org/homology.shtml), and
genes that were not expressed in the mouse central
nervous system (CNS) were excluded. The expression
specificity of a specific gene was calculated as de-
scribed in Bryois et al. [52] and the top 10% that
were most specifically expressed genes in each cell
type were used for enrichment analysis. The P values
of MAGMA enrichment analysis were corrected by
false discovery rate (FDR).

Gene set enrichment analysis
Gene set analysis was performed with MAGMA software
(Version 1.08) [49]. MAGMA gene set analysis includes
two main procedures. Firstly, by using the GWAS sum-
mary statistics and gene annotation files (NCBI b37,
downloaded from official MAGMA website (https://ctg.
cncr.nl/software/magma)), MAGMA maps SNPs to
genes (with gene boundaries setting parameters “--anno-
tate window = 35,10”). MAGMA then calculates the as-
sociation strength between a specific gene and
schizophrenia. A gene and phenotype association matrix
was generated in this step with default “snp-wise =
mean” model. The MHC region (from 25 to 34Mb) on
chromosome 6 was excluded in analysis. Secondly, gene
set analysis which was also known as competitive gene
set analysis was performed. MAGMA tests whether the
association of a target gene set with phenotype is greater
than other genes that are not included in the gene set.
The P value of competitive gene set was used to deter-
mine the significance level. We downloaded gene sets
from MSigDB database (v7 .1) (http : //sof tware .
broadinstitute.org/gsea/msigdb/) [53] and all GO terms
(including cellular component, biological processes, and
molecular functions). KEGG pathway gene sets were also
included and a total of 10,378 gene set terms were com-
piled. We further retained 6194 gene sets with a gene
number range from 10 to 200 for the final analysis. The
final P values (i.e., the association strength between gene
sets and schizophrenia) of MAGMA competitive gene
sets were corrected by false discovery rate (FDR).

LD score regression analysis
We conducted stratified linkage disequilibrium score re-
gression (LDSC) [54] to partition SCZ SNP heritability

and test enrichment of SCZ heritability in different func-
tional annotations [54]. In addition, we also performed
genetic correlation analysis between our Chinses cohort
and the reported EAS samples (based on summary sta-
tistics) using LDSC [54].

Transcriptome-wide association analysis
We performed TWAS using the summary statistics from
all combined samples (including our Han Chinese co-
hort, EAS and PGC2 [24], a total of 59,911 cases and 83,
527 controls) and brain eQTL (gene expression SNP
weights) from the CommonMind Consortium (CMC, N
= 452) [55]. CMC measured gene expression in the
dorsolateral prefrontal cortex (DLPFC) of human brain
with the use of RNA sequencing. The CMC gene expres-
sion SNP weights were derived from the FUSION pipe-
line (http://gusevlab.org/projects/fusion/). Detailed
information about sample collection, RNA extraction
and sequencing, genotyping and statistical analysis of
CMC dataset can be found in the original studies [55].
TWAS was performed on autosomal chromosomes
using the FUSION.assoc.test.R script across all predictive
models, such as LASSO, GBLUP, Elastic Net, and
BSLMM. To determine which is the best model for
TWAS, FUSION performed a five-fold cross-validating
of each model. TWAS associations (i.e., genes) were
considered “transcriptome-wide significant” if they
passed a strict Bonferroni-corrected threshold for all
genes tested in the dataset (corrected significance P
value: 0.05/3551 = 1.41 × 10− 5). Detailed description of
the principle of FUSION and statistical model can be
found in the original paper [56].

Expression quantitative trait locus (eQTL) analysis
We performed eQTL analysis using 4 public available
brain eQTL resources, including the CommonMind
Consortium (CMC) [55], LIBD BrainSeq Phase II RNA-
seq Project (LIBD2) [57], xQTL [58], and GTEx [50]
project. Please refer to the original papers [50, 55, 57,
58] about the sample collection, RNA-seq data process-
ing, and eQTL calculation.

Differential expression analysis in schizophrenia cases
and controls
We examined the expression level of genome-wide sig-
nificant genes in brains of SCZ cases (n = 559) and con-
trols (n = 936) by using the PsychEncode data [59].
Briefly, brain gene expression data of 559 schizophrenia
cases and 936 controls were quantified and analyzed by
the PsychEncode. Detailed information on tissue collec-
tion, RNA sequencing, gene expression quantification,
and differential expression analysis were provided in
PsychEncode papers [59] and website (http: http://
resource.psychencode.org/).

Liu et al. BMC Medicine          (2021) 19:177 Page 5 of 15

https://fuma.ctglab.nl/
https://fuma.ctglab.nl/
http://www.informatics.jax.org/homology.shtml
https://ctg.cncr.nl/software/magma
https://ctg.cncr.nl/software/magma
http://software.broadinstitute.org/gsea/msigdb/
http://software.broadinstitute.org/gsea/msigdb/
http://gusevlab.org/projects/fusion/
http://resource.psychencode.org/
http://resource.psychencode.org/


Results
GWAS of Han Chinese cohort identified 2 new
schizophrenia risk loci
Our samples had no overlap with the previously pub-
lished SCZ GWAS of Han Chinese population [17, 19,
23, 60]. We first performed a PCA analysis using the

samples genotyped with Illumina Asian Screening Arrays
(ASA) and found population stratification of our samples
(Fig. 1a); we thus divided our samples into two genetic-
ally matched subgroups. After stringent QC and exclud-
ing outliers, 2055 cases and 1823 controls were included
in subgroup 1, and 607 cases and 1186 controls were

Fig. 1 The genome-wide associations of our Han Chinese samples. a The principal component analysis (PCA) of cases and controls genotyped
with ASA SNP array. b The PCA result of the ASA subgroup 1 (2,055 cases and 1,823 controls). c The PCA results of the ASA subgroup 2 (607
cases and 1,186 controls). d The Manhattan plot of meta-analysis results of our Han Chinese samples (3,493 cases and 4,709 controls). e,f The
locuszoom plots of the two newly identified risk loci (the lead SNPs were rs7192086 and rs57016637)
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included in subgroup 2 (Fig. 1b, c). For samples geno-
typed with GSA arrays, no obvious population stratifica-
tion was observed. After strict QC, the final samples
genotyped with GSA arrays included in this study were
831 cases and 1700 controls (Additional file 1: Figure
S2). PCA analysis using genotype data of our samples
and the 1000 Genomes project [38] showed that all of
our samples clustered with samples of Han Chinese an-
cestry (Additional file 1: Figures S3, S4). After strict QC,
imputation using the 1000 Genomes project phase 3
panel [45] and post-imputation QC, a total of 3,937,527
biallelic SNPs from 3493 SCZ cases and 4709 healthy
controls were retained for GWAS. Principal components
(PCs) were included as covariates [40, 41] (10 PCs for
ASA subgroup1, 4 PCs for ASA subgroup2, 12 PCs for
GSA samples) when performing GWAS. We firstly
meta-analyzed the samples genotyped with ASA arrays
(subgroups 1 and 2). We then conducted a meta-analysis

through combining the results from ASA and GSA ar-
rays with the fixed effect model. The genomic inflation
(λGC) of our combined meta-analysis (including ASA
and GSA samples) was 1.10, and the λ1000 (scaled to a
sample size of 1000 cases and 1000 controls) was 1.02
(which was very close to the reported values in previous
Chinese GWAS [17, 23], 1.02 in Li et al. [23] and 1.019
in Yu et al. [17]) (Additional file 1: Figure S5), indicating
that population stratification unlikely confounds our
genome-wide association results.
Two genome-wide significant risk loci were identified

in our sample (Fig. 1d). The lead risk SNP for the first
locus is rs7192086 (P = 4.92 × 10-08, OR = 1.22), which
is located in the intron 2 of the SHISA9 gene (Fig. 1e).
Of note, a previous study (7308 cases and 12,834 con-
trols) showed nominal association between rs7192086
and SCZ (P = 1.34 × 10− 05, OR = 1.12) in European
population [22]. The lead SNP for the second risk locus

Fig. 2 The genome-wide significant risk loci identified in the combined meta-analysis (a total of 59,911 cases and 83,527 controls). a The
Manhattan plot of combined meta-analysis. b The locuszoom plot of the newly identified risk locus on 7p15.3 (the lead SNP is rs2106747). c The
locuszoom plot of the newly identified risk locus on 12q13.12 (the lead SNP is rs7301566)
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is rs57016637 (P = 2.33 × 10−11, OR = 1.34) located in
the intron 2 of PES1 (Fig. 1f). This genomic loci contain
three independent significant SNPs, and the other two
SNPs are rs117961127 (P = 2.73 × 10−11, OR = 1.35) (lo-
cated in the intron 2 of OSBP2) and rs116976860 (1.42
× 10−09, OR = 1.33) (located in the intergenic region of
SEC14L6 and GAL3ST1). Of note, rs57016637 is an East
Asian-specific polymorphism (Additional file 1: Figure S6).

Meta-analysis with EAS and EUR identified 15 new risk
loci
We then carried out a meta-analysis through meta-
analyzing GWAS data obtained from our sample and a

recent GWAS conducted in EAS [24]. Our meta-analysis
using combined EAS samples (26,271 cases, 40,071 con-
trols) [24] identified 24 risk loci (Additional file 1: Figure
S7). However, all of these loci have been reported in a pre-
vious study [24]. Intriguingly, we noticed that rs3845188
(P = 6.50 × 10−08, OR = 0.91) (which is located in the in-
tron 1 of the NEBL gene) reached the suggestive signifi-
cance level (P = 5.00 × 10−06), suggesting this locus may
be associated with SCZ (Additional file 1: Figure S8).
We further performed a meta-analysis through com-

bining results of our study and GWAS results from EAS
and PGC2 European samples (59,911 cases and 83,527
controls) [24]. We identified 153 genome-wide

Table 1 New genome-wide significant loci identified in this study (a total of 17 novel risk loci)

Genomic
locusa

Lead SNP Chr Pos A1/
A2(MAb)

MAF_
Ac

MAF_
Ud

P ORe Nearby gene(s)f

1 rs7192086 16 13061611 T/A(T) 0.32 0.28 4.92
×
10−08

1.22 SHISA9

2 rs57016637 22 30992925 G/C(G) 0.20 0.16 2.33
×
10−11

1.34 SF3A1, CCDC157, RNF215, SEC14L2, MTFP1, SEC14L3,
SEC14L6, GAL3ST1, PES1, TCN2, SLC35E4, DUSP18, OSBP2,
MORC2

3 rs115487049 2 76297343 A/T(A) 0.042 0.036 4.72 ×
10−08

1.07 SUCLA2P2

4 rs10178509 2 236792838 T/C(T) 0.39 0.42 1.08 ×
10−08

0.95 AGAP1

5 rs1426271 3 188187250 A/G(G) 0.35 0.33 3.23 ×
10−08

0.95 LPP

6 rs2911914 4 37820679 T/G(T) 0.25 0.27 2.12 ×
10−08

0.95 PGM2

7 rs6848123 4 80203425 A/C(C) 0.14 0.16 1.17 ×
10−08

1.05 NAA11

8 rs319227 5 146245762 A/C(A) 0.33 0.30 6.11 ×
10−09

1.05 PPP2R2B

9 rs12202107 6 130598623 T/C(C) 0.42 0.45 2.51 ×
10−08

1.05 SAMD3,TMEM200A

10 rs9386072 6 144859509 A/T(A) 0.43 0.47 1.01 ×
10−08

0.93 UTRN

11 rs2106747 7 23911499 A/G(G) 0.40 0.42 3.36 ×
10−08

1.05 TRA2A, FAM221A, STK31

12 rs492430 7 100313099 T/G(T) 0.065 0.058 2.26 ×
10−08

1.07 ACTL6B, GNB2, GIGYF1, POP7, EPO

13 rs59761926 9 10238178 T/C(T) 0.37 0.39 3.02 ×
10−09

0.95 PTPRD

14 rs7301566 12 50581647 T/C(T) 0.099 0.091 2.91 ×
10−08

1.06 ASIC1, SMARCD1, GPD1, COX14, CERS5, LIMA1

15 rs6563592 13 38814939 T/G(G) 0.31 0.30 2.13 ×
10−08

0.95 LINC00571

16 rs2099108 14 81675420 C/G(G) 0.45 0.47 2.67 ×
10−08

1.05 GTF2A1,STON2

17 rs6100546 20 58252407 T/C(C) 0.079 0.076 2.79 ×
10−08

0.94 PHACTR3

a The new loci identified in our Han Chinese cohort are shown in bold. b minor allele of our Chinese samples. c minor allele frequency in our Chinese cases. d

minor allele frequency in our Chinese controls. e Odds ratio is based on A1; f The nearby genes were defined with FUMA. FUMA firstly identified the SNPs that
were in LD (r2 > 0.6) with independent lead SNPs. And these SNPs were further used to identify the nearby genes by FUMA with default parameters
(posMapWindowSize = 10 kb). More details about defining nearby genes can be found in FUMA website: https://fuma.ctglab.nl/tutorial#parameters
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independent risk loci in the combined samples (Fig. 2a)
(The definition of independent risk loci was described in
methods section). Among these 153 risk loci, 15 were
novel (Table 1, Additional file 1: Table S1). In total, we
identified 17 new risk loci for SCZ.

Identification of potential target genes of the newly
identified risk SNPs
To identify the potential target genes of the newly iden-
tified risk SNPs, we performed eQTL analysis using data
from the human brain tissues. Among the 17 lead SNPs,
9 showed associations (uncorrected P < 0.05) with ex-
pression of 33 genes in the human brain (Additional file
1: Table S2). Of note, rs2106747 (P = 3.36 × 10−08, OR =
1.05, Fig. 2b) showed a strong association with
FAM221A expression in all four eQTL datasets. Another
interesting SNP is rs7301566 (P = 2.91 × 10−08, OR =
1.06, Fig. 2c), which was associated with expression of
several genes, including COX14, DIP2B, CERS5, RP4-
605O3.4, SPATS2, ASIC1, and ATF1 (Additional file 1:
Table S2). These results suggest that the newly identified
risk variants may contribute to SCZ risk through regu-
lating expression of these eQTL genes.

Differential expression analysis in schizophrenia cases
and controls
We explored the expression level of potential target
genes of the newly identified risk variants in SCZ cases
and controls using expression data from the PsychEn-
code (including 559 cases and 936 controls) [59]. Among
the 33 potential target genes, 14 showed nominal differ-
ence in expression in SCZ cases compared with controls
(Additional file 1: Table S3), supporting that the newly
identified risk variants may confer SCZ risk by regulat-
ing the expression of these target genes. In addition, we
also examined the expression of genes located near the
two newly identified loci in our Chinese samples (Table
1, Fig. 1e, f). We found that SHISA9 showed a trend of
upregulation in brains of SCZ cases compared with con-
trols (P = 0.053). Interestingly, OSBP2 was significantly
downregulated in brains of SCZ cases compared to con-
trols (P = 1.07 × 10−07). Taken together, these expression
data provide further evidence that support the newly
identified risk variants may confer risk of SCZ through
modulating expression level of these genes.

Polygenic risk score (PRS) profiling
We conducted PRS analysis to predict the case-control
status of our samples (ASA subgroup 1) and estimate
the phenotypic variance (of our samples) that can be ex-
plained by the published GWAS summary statistics data
[24]. When using the summary statistics from EAS as
training set [24], the explained variance (estimated by
Nagelkerke R2) ranged from 0.4 to 5.9% and the training

data has the largest variance explanation at P value = 0.2
(P = 2.19 × 10−37) (Fig. 3). The training set from EAS +
EUR has an overall better prediction performance and
variance explanation at each P value threshold than EAS
[24], and the explained variance ranged from 2.0% to
6.5%. At P value = 0.01 threshold, the training dataset
has the largest variance explanation (P = 4.69 × 10−41).
The EUR and CLOZUK+PGC2 training sets had rela-
tively poor prediction performance than the EAS and
EAS + EUR training set. The explained variance (esti-
mated by Nagelkerke R2) ranged from 0.6 to 2.7% and
0.7 to 4.4% for EUR and CLOZUK+PGC2 training data-
sets, respectively. The PRS analysis indicated that EAS
and EAS + EUR training sets had relative good power to
predict the SCZ and healthy controls status of our sam-
ple, and the EAS + EUR training set had better predic-
tion performance.

Identification of tissues and cell types associated with
schizophrenia
We conducted tissue enrichment analysis by using
GWAS associations from the combined samples (i.e.,
our cohort, EAS and PGC2 EUR [24]) and gene expres-
sion from GTEx [50], with the use of FUMA [46]. SCZ
heritability was mainly enriched in brain tissues (Add-
itional file 1: Figure S9a). Of note, two brain cerebellum
tissues showed the strongest associations (brain cerebel-
lar hemisphere, P = 2.54 × 10−23, and brain cerebellum,
P = 8.51 × 10−23). The frontal cortex (BA9) (P = 1.28 ×
10−19) and brain cortex (P = 2.20 × 10−18) also showed
significant enrichment.
We further conducted cell-type enrichment analysis

(Additional file 1: Figure S9c). Similar with previous
findings [52], two telencephalon neuronal cell types, in-
cluding telencephalon projecting excitatory interneurons
(P = 1.12 × 10−09, FDR < 0.05) telencephalon projecting
inhibitory interneurons (P = 1.15 × 10−06, FDR < 0.05),
showed significant enrichment for SCZ associations. We
also identified other novel associations, including oligo-
dendrocytes (P = 8.03 × 10−07, FDR < 0.05), cholinergic
and monoaminergic neurons (P = 6.06 × 10−05, FDR <
0.05), and cerebellum neurons (P = 4.99 × 10−05, FDR <
0.05). Collectively, our results suggest that SCZ risk
genes are actively expressed in these identified tissues
and cell types, implying the pivotal roles of these tissues
and cell types in SCZ.

Gene set analysis identified enriched gene sets and
pathways
We carried out gene set enrichment analysis and identi-
fied 6 significant enriched terms, including neuron spine
(P = 7.06 × 10−07, FDR = 0.0044), membrane
depolarization during action potential (P = 4.72 × 10−06,
FDR = 0.015), cytosolic calcium ion transport (P = 4.03
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× 10−05, FDR = 0.045), voltage gated sodium channel
complex (P = 4.09 × 10−05, FDR = 0.045), t tubule (P =
4.32 × 10−05, FDR = 0.045), and voltage gated sodium
channel activity (P = 2.57 × 10−05, FDR = 0.045). In
addition, a few gene sets also showed a trend of enrich-
ment, including regulation of synaptic plasticity (P = 1.5 ×
10−04, FDR = 0.074) and neurotransmitter receptor com-
plex (P = 2.00 × 10−04, FDR = 0.074) (Additional file 1:
Table S4).

Enrichment of schizophrenia heritability in conserved
genomic regions, promoters, and enhancers
LDSC analysis showed that SCZ associations were
mainly enriched in various conserved genomic regions,
promoters, and enhancers (SuperEnhancer_Hnisz,
H3K27ac_Hnisz) (Additional file 1: Figure S9b), which
were consistent with previous findings [26, 54].

TWAS analysis identified risk genes for schizophrenia
We conducted a TWAS to identify genes whose cis-
regulated expression were associated with SCZ. We
identified 76 transcriptome-wide significant genes (cor-
rected by multiple comparison testing) (Fig. 4 and Add-
itional file 1: Table S5). Among these identified genes,
24 have been reported in a previous study [59]. Of note,
GIGYF1 (P = 3.03 × 10−05) (located near the newly iden-
tified risk loci) showed a trend of TWAS significance
(Additional file 1: Table S5). Taken together, our TWAS
identified 52 new risk genes whose cis-regulated expres-
sion change may have a role in SCZ.

Discussion
In this study, we first performed a GWAS for SCZ in
Han Chinese samples. We then conducted meta-
analyses by combining our results and the published

Fig. 3 PRS analysis results of our ASA subgroup 1 samples. PRSs were computed using GWAS summary statistics from four training sets. The first
is EAS (EAS) training set (including 22,778 SCZ cases and 35,362 controls). The second is EAS + PGC2 European (EAS + EUR) training set (including
56,418 SCZ cases and 78,818 controls). The third is PGC2 European (EUR) training set (33,640 cases and 43,456 controls), and the fourth is
CLOZUK+PGC2 (CLOZUK+PGC2) training set (40,675 SCZ cases and 64,643 controls). The trans-ancestry EAS + EUR data set had better
performance at different P thresholds
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GWAS summary statistics from individuals of East Asian
and European ancestry [24]. We identified 2 new
genome-wide significant risk loci in our Han Chinese
cohort. SNP rs7192086 was located in the intron 2 of
the SHISA9 gene. SHISA9 (also known as CKAMP44)
protein is a brain-specific type-I transmembrane protein
and is highly expressed in hippocampal dentate gyrus
and brain cerebral cortex [61]. SHISA9 is enriched at
postsynaptic sites and its intracellular domain contains a
PDZ domain interaction site which could physically
interact with AMPA-type glutamate receptor (AMPAR);
thus, SHISA9 plays important roles in synaptic short-
term plasticity [61]. Notably, the AMPAR shows abnor-
mal forward trafficking in the frontal cortex of SCZ pa-
tients [62]. These lines of evidence suggest that SHISA9
may contribute to SCZ by affecting the function of
AMPAR and synaptic transmission. However, further
functional studies are warranted to reveal the role of
SHISA9 in SCZ.
Another genome-wide significant risk variant identi-

fied in our sample is rs57016637. Intriguingly, we no-
ticed that rs57016637 is fixed in other populations
(Figure S8). Despite the fact that the majority of risk var-
iants have similar effects between EUR and EAS popula-
tions [23], population heterogeneity still exists. For
example, rs374528934 was reported to be strongly asso-
ciated with SCZ in EAS (P = 5 × 10−11). Nevertheless,
the MAF of rs374528934 in EUR is quite low (0.7%)
[24]. Our data suggest that rs57016637 may be a Han
Chinese-specific risk variant for SCZ. SNP rs117961127
(in LD with lead SNP rs57016637 in the loci, r2 = 0.32
in 1000 East Asian samples) was located in the intron 2
of OSBP2, a gene that encodes a cholesterol-binding
protein. Cholesterol levels were reported to be altered in

SCZ cases compared to controls [63]. In addition, Kra-
kowski et al. showed that cholesterol levels were strongly
associated with cognition in SCZ [64]. These data sug-
gest that OSBP2 may have a role in SCZ through regu-
lating cholesterol levels. Further investigating the role of
OSBP2 in SCZ is needed.
Two novel GWAS loci reported in our analysis did not

reach GWS level in our follow-up meta-analysis with
EAS and EAS + EUR samples (Additional file 1: Table
S1). Of note, previous studies have also observed similar
results in GWAS studies of Han Chinese [19, 60]. For
example, the top associations identified by Shi et al.
(rs16887244, rs10489202) [19] and Yue et al. (rs1233710,
rs1635, rs2142731, rs11038167, rs11038172, rs835784)
[60] in Chinese population did not reach genome-wide
significance level in a larger meta-analysis (in EAS) re-
ported by Lam et al. [24]. More work is needed to ex-
plore if this observation is due to population-specific
associations or genetic heterogeneity between regional
samples.
By meta-analyzing our results with GWAS associations

from EAS and EUR [24], we identified 15 new risk loci,
including 7p15.3 (the lead risk SNP is rs2106747, which
was strongly associated with the expression level of
FAM211A) and 12q13.12 (the lead risk SNP is
rs7301566, which was an eQTL of several genes, includ-
ing COX14, DIP2B, CERS5, RP4-605O3.4, SPATS2,
ASIC1, and ATF1). These new risk loci provide valuable
clues for further functional study. Further functional in-
vestigation of these risk genes will also provide import-
ant insights into SCZ pathogenesis and help to develop
potential therapeutic targets. Some of our newly identi-
fied GWS loci are located in genomic regions near previ-
ous reported loci. For example, rs319227 (P = 6.11 ×

Fig. 4 TWAS results. The red line indicates the significant level corrected by the Bonferroni test. The summary associations from all combined
samples (including this study, EAS and EUR) were used to perform TWAS
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10−09, Table 1) and rs11958187 (P = 9.39 × 10−09, re-
ported by Lam et al. [24]) are located near PPP2R2B, but
these two index SNPs are not in LD (R2 < 0.1). In
addition, rs2106747 (P = 3.36 × 10−08, Table 1) and
rs112316332 (P = 3.04 × 10−08, reported by Lam et al.
[24]) also showed similar results. These results suggest
that these risk loci are genetically independent. However,
more work is warranted to elucidate the functional
mechanisms of these loci.
We compared our results with the findings reported by

PGC3 (preprinted on medRxiv) [65]. We found that 6 loci
(index SNPs are rs115487049, rs6848123, rs319227,
rs59761926, rs7301566, rs6563592) reported in our study
(Table 1) also show significant associations with SCZ in
PGC3. This observation suggested though our sample size
is relatively small, it could help us to discover new associa-
tions. A meta-analysis with PGC3 will help to identify more
new associations and the underlying genetic basis of SCZ
Despite the fact that SCZ risk associations were highly

shared between EAS and EUR, conducting GWAS in EAS
is still important as it could improve our understanding of
the underlying biology of SCZ. Firstly, Lam et al. showed
that the genetic correlation between the EAS and EUR
GWAS summary statistics is 0.98, indicating that the gen-
etic basis of SCZ are highly shared between EAS and EUR.
With the increasing EAS sample, novel risk loci well be
identified continuously, which will help us to understand
the genetic basis of SCZ better. In addition, Lam et al. also
reported EAS-specific association, e.g., rs374528934 (P = 5
× 10− 11, minor allele frequency is 0.45 and 0.007 in EAS
and EUR, respectively). These results demonstrated that
the EAS GWAS summary statistics can not only facilitate
to discover the genetic associations shared between EAS
and EUR, but also help to identify EAS-specific GWAS as-
sociations. Finally, genome-wide associations from differ-
ent populations help to improve fine-mapping [24]. We
believe that EAS GWAS summary statistics will provide
important insights into the genetic architecture (both
shared with EUR population and EAS-specific) and the
underlying biology of SCZ.
In the meta-analysis of EAS samples (our sample +

EAS) [24], we found some novel loci (compared with EAS
summary statistics alone). However, these loci also
reached genome-wide significance level in EAS + PGC2
EUR summary statistics [24]. For example, rs12031518
reached genome-wide significance level in our EAS meta-
analysis (our sample + EAS) (P = 4.96 × 10−08). Of note,
this SNP did not reach genome-wide significance level in
EAS samples (P = 7.58 × 10−08). However, it showed
genome-wide significant association in EAS + PGC2 EUR
summary statistics (P = 6.43 × 10−11) [24]. We calculated
the genetic correlation between our ASA/GSA samples
and the reported EAS (22,778 cases; 35,362 controls) [24].
Although these two GWAS summary statistics are highly

correlated (the genetic correlation is 0.71), the genetic cor-
relation is not very close to 1. A possible reason is that the
sample size included in our study is relatively small (3493
cases and 4709 controls) compared with the reported EAS
samples (22,778 case and 35,362 controls).
PRS analysis revealed several interesting results. First,

EAS training set had overall better performance than
EUR and CLOZUK+PGC2 samples (though the sample
size of EAS is less than the two GWAS summary statis-
tics), indicating that similar ethnic background (of the
EAS summary statistics) helps to improve the PRS pre-
diction performance. Second, CLOZUK+PGC2 training
set had better performance than EUR, indicating that
the training set with larger sample size had better per-
formance. Third, EAS + EUR GWAS summary statistics
had the best performance than other training sets. This
result reflects that trans-ancestry meta-analysis improves
the prediction power.
Tissue and cell-type enrichment analysis revealed that

SCZ associations showed the significant enrichment in
the cerebellum, suggesting the potential role of cerebel-
lum in SCZ. Of note, several previous studies also sug-
gested that cerebellum may play an important role in
SCZ [66–69]. These results suggest that the cerebellum
may have a pivotal role in SCZ etiology.
Our study has several limitations. Firstly, our sample

size is relatively small compared with recent SCZ GWAS
cohort, such as PGC2 [26], Clozuk [21], or East Asian
meta-analysis [24]. Additional SCZ risk loci will be
found with the increase of sample size. Secondly, al-
though we reported 17 novel risk loci, the casual variants
and genes of these identified risk loci remain largely un-
known. Further work, including pinpointing causal vari-
ants and genes, functional characterization of risk genes,
exploring the role of risk genes in developing and adult
brain, will provide pivotal insights into SCZ pathophysi-
ology. Thirdly, we used eQTL data from Europeans to
explore the associations between genome-wide signifi-
cant SNPs and gene expression level in human brain.
Considering that some novel risk loci were from our
Chinese cohort, an ideal approach is to check the effect
of the novel genetic variations and gene expression both
in EAS and EUR populations. However, the brain eQTL
data in EAS is not publically available so far. More work
is needed to explore if these genetic variations also asso-
ciated with gene expression in Chinese population.
Fourthly, although including PCs as covariate is a regular
and useful way to correct population stratification of
GWAS, challenges remain in PCA. For example, select-
ing the optimal number of PCs [70] remains an open
question (i.e., is relatively arbitrary, different numbers of
PCs were reported in different studies). In addition,
more work is needed to determine the number of opti-
mal genetic markers for PC calculation.
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Conclusions
In summary, we identified 17 risk loci for SCZ, including
a Han Chinese-specific risk locus. We carried out com-
prehensive post-GWAS analysis, including TWAS,
eQTL, differential expression analysis, and heritability
partitioning (LDSC). Our results expand the list of
genome-wide significant risk loci for SCZ and provide
new insight into genetic architecture of SCZ.
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