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Abstract
The Chinese tree shrew holds a great potential as a viable animal model in biomedical research, especially for infectious diseases
and neuropsychiatric disorders. A thorough understanding of the innate immunity, which represents the first line that defends the
host against viral infection, of the Chinese tree shrew, is needed. However, the progress is hindered by the lack of a proper cell line
for research usage. In this study, we established a cell line that is applicable to the study of tree shrew innate immune responses
against viral infections. The Chinese tree shrew primary renal cells (TSPRCs) were immortalized by simian virus 40 large T
antigen (SV40LT) transduction, and the immortalized cells were termed TSR6 (tree shrew renal cell #6). TSR6 showed a similar
morphology to TSPRCs and expressed the epithelial cell-specific marker cytokeratin 18 (KRT18). In addition, TSR6 could
be transfected by transfection reagent and was suitable for CRISPR/Cas9-mediated gene editing. Infection of Newcastle
disease virus (NDV) or herpes simplex virus 1 (HSV-1) in TSR6 induced the mRNA expression of tree shrew interferon-β
(tIFNB1) and myxovirus resistance protein 1 (tMx1) in a dose- and time-dependent manner. Collectively, we successfully
established a tree shrew renal cell line and demonstrated that this cell line was suitable for the study of the innate immune
response to viral infections.
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Introduction

The Chinese tree shrew is a squirrel-like and rat-sized mam-
mal that widely distributes in Southeast Asia, South, and
Southwest China (Hubrecht et al. 2010; Xu et al. 2013a; Yao
2017; Zheng et al. 2014). It shares a close relationship to the
primate and has many advantages as an experimental animal
for biomedical researches, such as a small body size (100–

150 g), a low-cost of maintenance, a short reproductive cycle
(~ 6 weeks), and life span (6–8 years) (Fan et al. 2013;
Tsukiyama-Kohara and Kohara 2014; Xiao et al. 2017; Xu
et al. 2012; Yao 2017).

To this day, increasing reports have showed that the
Chinese tree shrew could be used as an experimental an-
imal for the study of viral infectious diseases (Li et al.
2018; Tsukiyama-Kohara and Kohara 2014; Xiao et al.
2017; Xu et al. 2013b; Yao 2017). Inoculated newborn
tree shrews with the sera from hepatitis B virus (HBV)-
infected patients or tree shrews led to hepatic histopatho-
logical changes in these animals that were resembled to
that of HBV-infected humans (Ruan et al. 2013). Hepatitis
C virus (HCV)-infected tree shrews showed mild hepatitis
and intermittent viremia during the acute phase of infec-
tion (Amako et al. 2010). The pathologic changes of
chronic hepatitis were observed, and the infectious virus
particles were produced in the livers of infected tree
shrews (Amako et al. 2010). Besides HBV and HCV, tree
shrews were also susceptible to other human viruses (Li
et al. 2018; Xiao et al. 2017). For instance, herpes sim-
plex virus 1 (HSV-1) and HSV-2 could latently infect tree
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shrew peripheral nervous system sensory neurons, and the
viral reactivation from latency leads to recurring cold
sores in tree shrew (Li et al. 2016). Experimentally,
Coxsackie virus A16-infected tree shrews showed in-
creased body temperature and pathological changes in
central nervous system and other organs (Li et al. 2014).
The human H1N1 influenza virus-infected tree shrews
displayed mild or moderate systemic and respiratory
symptoms and pathological changes in respiratory tracts
(Yang et al. 2013).

Despite the fact that tree shrew is closely related to the
primate and can mimic the pathology of human virus infec-
tions, the tree shrew had its unique genetic features in the
innate immune system that were revealed by the analysis of
the Chinese tree shrew genome (Fan et al. 2013). For instance,
the most important cytoplasmic pattern-recognition receptors
(PRRs) retinoic acid-inducible gene I (RIG-I) was absent in
the tree shrew, which leads to a functional replacement with
MDA5 (Xu et al. 2016). Many genes that are involved in the
innate immune response were under positive selection in the
Chinese tree shrew, such as toll-like receptors 8 (TLR8) and
TLR9 (Yu et al. 2016). To use the tree shrew as a mature and
stable experimental animal in the viral infectious disease re-
search, comprehensive elucidation of the innate immune is a
prerequisite. However, the absence of a suitable cell line im-
pedes this progress.

In this study, we immortalized and established a tree shrew
renal cell line that was designated TSR6 (tree shrew renal cell
#6). The TSR6 was identified as epithelial lineages based on
the expression pattern of cytokeratin 18 (KRT18) and
vimentin (VIM), which were lineage-specific markers for ep-
ithelial and fibroblasts cells, respectively. TSR6 could be
transfected and was suitable for the CRISPR/Cas9-mediated
gene editing. We provided further evidence to show that the
TSR6 could be used for the study of tree shrew innate immune
response to viral infections.

Materials and methods

Experimental animals

The Chinese tree shrews were purchased from the experimen-
tal animal core facility of the Kunming Institute of Zoology,
Chinese Academy of Sciences. All efforts were made to min-
imize the suffering of animals.

Isolation and culture of the tree shrew primary renal
cells

The tree shrew was lethally anesthetized by pentobarbital and
the kidney was quickly harvested. The isolation of tree shrew
renal cells was described in our previous study (Xu et al.

2016). Briefly, the kidney was minced into small pieces and
digested with 1 mg/mL DNase I (Sigma, AMPD1-1KT) and
5mg/mL collagenase type IV (Invitrogen, 17104019) solution
for 45 min in a 37 °C water bath. After washed three times
with cold phosphate-buffered saline (PBS; biological indus-
tries, 0021517), the tree shrew primary renal cells (TSPRCs)
were resuspended and cultured at a density of 2 × 105 cells/mL
in high-glucose Dulbecco’s modified eagle medium (DMEM;
Gibco-BRL, 11965-092) supplemented with 10% fetal bovine
serum (FBS; Gibco-BRL, 10099-141) and 1 × penicillin/
streptomycin (Gibco-BRL, 10378016) at 37 °C in 5% CO2

until confluent.

Cells and lentiviral transduction

HEK293T cells were supplied by the Kunming Cell Bank,
Kunming Institute of Zoology, Chinese Academy of
Sciences. HEK293 cells were cultured in high-glucose
Dulbecco’s modified eagle medium (DMEM; Gibco-
BRL, 11965–092) supplemented with 10% fetal bovine
serum (FBS; Gibco-BRL, 10099–141) and 1 × penicillin/
streptomycin (Gibco-BRL, 10378016) at 37 °C in 5%
CO2.

The cells were seeded into six-well plates at a density of
4 × 105 cells/well and co-transfected with 0.4 μg of pMD2.G
(Addgene, 12259), 0.8 μg of psPAX2 (Addgene, 12260), and
1.3 μg of pLVX-SV40LT-puro plasmid (a kind gift from Dr.
Ping Zheng, Kunming Institute of Zoology). The viral super-
natants were harvested and filtered with 0.45 μm filters at 48 h
post-transfection. For the lentiviral infection, TSPRCs were
seeded in six-well plates at a density of 4 × 105 cells/well.
After 12 h, the culture medium was replaced by infection
mixture [500 μL cultural medium with 1 μg polybrene
(Solarbio, H8761) and 500 μL viral supernatants].
Puromycin (1 μg/mL; Solarbio, P8230) was added to the cul-
ture medium at 48 h post-infection, and the puromycin-
resistant cells were pooled and expanded.

Cell growth kinetics

The TSR6 cells were seeded in 12-well plates at a density of
1 × 105 cells/well for growth. Cells in three wells were har-
vested by trypsinization (0.25% Trypsin-EDTA; Gibco,
1806021) for five consecutive days, the cell numbers were
counted by Countstar BioTech (Countstar, China). The
growth curve of cells was plotted.

Viral infections

HSV-1 was obtained from Dr. Jumin Zhou’s laboratory at the
Kunming Institute of Zoology, Chinese Academy of Sciences.
NDV was obtained from the China Institute of Veterinary
Drug Control. All the viruses were propagated and amplified
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following the previously described procedures (Xu et al. 2015,
2016, 2019).

The TSR6 cells were seeded in 24-well plates at a density
of 2 × 105 cells/well and infected with NDV or HSV-1 at a
multiplicity of infections (MOI) of 1, 2, and 5 for 1 h, respec-
tively. Cells were thenwashed by PBS twice, and fresh growth
medium was added. The cells were harvested at 6 h and 12 h
post-infection.

RNA isolation and quantitative real-time PCR

Total RNA was extracted using RNAsimple Total RNA Kit
(TIANGEN, DP419) according to the manufacturer’s instruc-
tion. Complementary DNAwas synthesized by using random
primer and M-MLV reverse transcriptase (Promega, M1701).
The quantitative real-time PCR was performed using SYBR
green Premix Ex Taq II (TaKaRa, RR820L) supplemented
with gene-specific primers on a CFX Connect Real-Time
System (Bio-Rad, USA) as described previously (Xu et al.
2016). The primers for tIFNB1 and tMx1 were described in
our previous studies (Xu et al. 2015; Yu et al. 2014, 2016).
The primers for tree shrew KRT18 (tKRT18: 5′-GAGT
ACCAGGAGCTCATGAATGT-3′/5′-TGTTCTGCATCCCA
GATTCCA-3′) and for tVIM (5′-GCAGGATGAGATTC
AGAAC-3′/5′-CTTAACATTGAGCAGGTCTT-3′) were
newly designed based on the full-length mRNA sequences
of tKRT18 and tVIM from the tree shrew database:
treeshrewDB (http://www.treeshrewdb.org) (Fan et al. 2014).

DNA transfection

TSR6 cells were seeded in six-well plates at a density of 5 ×
105 cells/well, and the cell culture medium was replaced by
Opti-MEM (Gibco-BRL, 31985-070) before transfection. For
transfection, 2 μg of pEGFP-N2 (Clontech, #6081-1) was
diluted in 200 μL of Opti-MEM, then 4 μL of X-
tremeGENE HP (Roche, 06366546001) was added to form
the transfection reagent-plasmid DNA complex. After incuba-
tion for 15 min at room temperature, the transfection mixture
was added to cells in a dropwise manner. At 5 h post-transfec-
tion, the Opti-MEM was replaced by growth medium. The
GFP expression was visualized at 24 h post-transfection under
a fluorescencemicroscope, and cells were collected at 48 post-
transfection for flow cytometry analysis. We also tested the
transfection by Lipofectamine 3000 (Thermo Fisher,
L300015). In brief, 3.75 μL of Lipofectamine 3000, 2.5 μg
of plasmid DNA, and 5 μL of P3000 (Thermo Fisher,
L300015) were diluted in 125 μL Opti-MEM to form
Lipofectamine 3000-plasmid DNA-P3000 complex. The pro-
cedures for transfection, detection of GFP expression, and
flow cytometry analysis were same as above.

Overexpression and knockdown of tree shrew
melanoma differentiation factor 5 (tMDA5)

Flag-tagged tMDA5 plasmid (pCMV-tMDA5-3tag) and
siRNA targeted to tMDA5 had been described in our pre-
vious study (Xu et al. 2016). We used the Lipofectamine
3000 (Thermo Fisher, L300015) for the transfection, as it
had a higher transfection efficiency compared to X-
tremeGENE HP (Roche, 06366546001). The TSR6 cells
were seeded in six-well plates (5 × 105 cells/well) and were
transfected with pCMV-tMDA5-3tag as described above.
siRNA transfection (100 nM/well) was performed follow-
ing the protocol as described for overexpression vector but
without P3000 reagent. Cells were counted at 48 h post-
transfection and collected for quantitative real-time PCR
and Western blot analyses.

CRISPR/Cas9-mediated knockout of tMDA5 in TSR6

The sgRNA targeting sequence for the tMDA5 gene was
designed by using the CRISPR Design Tool (http://
bioinfogp.cnb.csic.es/tools/breakingcas/index.php)
(Oliveros et al. 2016). The sgRNA targeting sequence pair
(tMDA5-sgRNA-F: 5′-TAGACAAGCAGTTCCGCTAT-
3′/tMDA5-sgRNA-R: 5′-ATAGCGGAACTGCTTGTCTA
-3′) were cloned into the pX330-T7 vector (a kind gift from
Dr. Ping Zheng, Kunming Institute of Zoology) expressing
mCherry following the previous report (Ran et al. 2013).
The TSR6 cells were transfected by using Lipofectamine
3000. Cells expressed mCherry were sorted by flow cy-
tometry and cultured for 48 h, then single cells were man-
ually picked with a mouth pipette for expansion after cul-
ture for around 3 weeks.

Genomic DNAwas extracted using AxyPrep Multisource
Genomic DNAMiniprep Kit (Axygen, 26817KC1). The gene
region spanning the sgRNA targeting site was amplified by
primer pair (tMDA5-sgRNA-2Fc: 5′-GCTAGAGGACCCTG
CACCAG - 3 ′ / tMDA5 - s g RNA - 2R c : 5 ′ - CAGG
CAGAAAGGTCAGGTAG-3′). The PCR products were first
sequenced using the PCR primer tMDA5-sgRNA-2Fc to
screen which sample contains potential mutation(s).
Subsequently, the PCR products containing potential muta-
tion(s) were cloned into T-Vector pMD19 (TaKaRa, 3271).
About 10 clones were randomly selected for sequencing for
each transformation. The sequence was analyzed by using the
DNASTAR Lasergene 7.1 (DNAS Inc., Madison, WI, USA).
Cells containing mutation(s) were further analyzed by
Western blot to confirm the successful knockout of tMDA5.

Western blot and immunofluorescence

Cells were harvested by trypsinization and washed three times
with cold PBS. The collected cells were lysed on ice in RIPA
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lysis buffer (Beyotime, P0013), followed by centrifugation at
12,000×g at 4 °C for 10min to remove cell debris. The protein
concentration was determined using the BCA protein assay kit
(Beyotime, P0012) following the manufacturer’s instructions.
A total of 20 μg protein was separated by electrophoresis on a
12% (vol/vol) SDS-polyacrylamide gel and transferred to
PVDF membranes (Bio-Rad, #1620177). The membranes
were blocked with 5% (wt/vol) bovine serum albumin
(BSA; Amresco, 0332) in Tris-buffered saline supplemented
with 0.1% Tween-20 (TBST) (Cell Signaling Technology,
#9997) at room temperature for 2 h. The membranes were
then incubated with primary antibodies against the KRT18
antibody (EnoGene, E1A0191), the VIM antibody
(EnoGene, E1A7013), and the MDA5 antibody (Merck
Millipore; ABF210), respectively, overnight at 4 °C. After
three washes with TBST, the membranes were incubated for
1 h with peroxidase-conjugated anti-rabbit (KPL, 074–1506)
IgG (1:10,000) at the room temperature. The epitope was vi-
sualized by using an ECL Western blot detection kit
(Millipore, WBKLS0500).

For immunofluorescence assay, cells were seeded in
chamber slide (Thermo, 154526) for 12 h and washed three
times with PBS before being fixed by 4% paraformalde-
hyde. After having been permeated with 0.2% Triton
X-100 for 15 min and three washes (each 5 min), cells were
incubated with the primary antibodies against KRT18 and
VIM, respectively, overnight at 4 °C. After another round
of three washes with PBS, cells were incubated with the
secondary antibody (Invitrogen, A-21207) for 1 h. Nuclei
were stained by DAPI (Roche, 10236276001). Intact cells
were imaged by using an Olympus FluoView™ 1000 con-
focal microscope (Olympus).

Statistical analysis

Statistical significance was determined by using the un-
paired Student’s t test with Prism software (GraphPad).
Significant values were indicated as *p < 0.05 and **p <
0.01. Results were represented as mean ± standard error of
mean (SEM). Data shown were representatives of at least
three independent experiments, which showing similar
results.

Results

Establishing the TSR6 cell line

To establish a stable tree shrew renal cell line, TSPRCs
were transducted with the lentivirus containing the
SV40LT and were selected by puromycin treatment.
While the TSPRCs died out at passage 3, the stably
transducted cells continued to replicate to passage 40
(Fig. 1a). Single cells were cultured for monoclonal cell
formation, and we finally obtained a monoclonal cell line,
which was termed as tree shrew renal cell #6 (TSR6).
Both the TSPRCs and TSR6 exhibited similar morpholo-
gy; no obvious morphological changes were observed
during prolonged passage in culture (Fig. 1a). The hall-
mark of immortalized cells is that it could continuously
proliferate. We determined the growth kinetics of TSR6.
As shown in Fig. 1b, TSR6 began to enter a fast growing
period at 48 h after adherence to culture plate. We cul-
tured the TSR6 cells up to 100 passages, and we found no
essential difference in growth rate between different

Fig. 1 Morphological characterization of the Chinese tree shrew primary
renal cells (TSPRCs) and cell line TSR6. a Cellular morphology of
TSPRCs at passages 1 and 3 (TSPRC P1 and TSPRC P3), SV40LT
transduced TSPRCs at passage 40 (TSPRC P40), and the TSR6 cells.

All cells were magnified by 100 times. b The growth curve of the
TSR6 cells. Cells were seeded in 12-well plates at a density of 1 × 105

cells/well. We counted the cell numbers each day for five consecutive
days
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generations. Taken together, these results suggested that
the TSR6 was a stable cell line. This cell line has been
deposited in the Kunming Cell Bank, Kunming Institute
of Zoology, Chinese Academy of Sciences (KCB No:
KCB2018047YJ).

Lineage of the TSR6 cells

The lineage of the TSR6 was determined by detecting the
KRT18 and VIM expressions, which are markers for epithelial
and fibroblast cells, respectively (Nelson 1983; Wang et al.
2014). Immunofluorescence analysis showed that both the
tKRT18 and tVIM were expressed in TSR6 (Fig. 2a).
Compared to TSPRCs, the TSR6 had a significantly increased
mRNA level of tKRT18 and a significantly decreased level of
tVIM. In accord with mRNA expression, the protein level of
tKRT18 was elevated in TSR6, whereas tVIM protein expres-
sion showed no difference between TSR6 and TSPRCs (Fig.
2b, c). Although VIM is a marker of fibroblast cell, it has also
been detected in some specific epithelial cells, such as mam-
mary epithelial cells (Mork et al. 1990). In contrast, KRT18 is
exclusively expressed in epithelial cells (Nelson 1983). It was

therefore reliable to conclude that the TSR6 is an epithelial
lineage cell line.

TSR6 can be transfected by transfection reagents

Ectopic expression and siRNA-mediated knockdown are the
most common experiments for immunology research. We
firstly investigated the expression level of EGFP in TSR6 by
using commercial transfection reagents. Both X-tremeGENE
HP and Lipofectamine 3000 could successfully deliver the
EGFP vector into TSR6 and produce the EGFP protein
(Fig. 3a). All the transfections had a mild effect on cell viabil-
ity (Fig. 3b), but the Lipofectamine 3000 exhibited a higher
transfection efficiency than X-tremeGENE HP (Fig. 3a). We
further performed overexpression and knockdown assays
for tMDA5, which were carried out on TSPRCs in our
previous study (Xu et al. 2016), by using Lipofectamine
3000 for TSR6 cells. Evidently, siRNA transfection
knocked down the expression of tMDA5 at both mRNA
and protein levels (Fig. 3c, d), whereas overexpression of
tMDA5 generated the corresponded protein in TSR6 cells
(Fig. 3e). These results indicated that the TSR6 cells could

Fig. 2 Expression of tKRT18 and tVIM in the Chinese tree shrew
primary renal cells (TSPRCs) and cell line TSR6. a TSPRCs and TSR6
were stained with KRT18 and VIM antibodies (red), and cell nuclei were

stained by DAPI (blue). The mRNA (b) and protein (c) levels of KRT18
and VIM were analyzed by quantitative real-time PCR and Western blot
assays, respectively
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be effectively transfected and used to perform the ectopic
expression and knockdown experiments.

TSR6 was suitable for CRISPR/Cas9-mediated gene
editing

The CRISPR/Cas9 technology has been widely used to facil-
itate efficient genome engineering in eukaryotic cells by sim-
ply specifying a 20-nt targeting sequence within its guide
RNA (Ran et al. 2013), and this technology has opened a
broad avenue for molecular biology (Chen et al. 2016; Jin
and Li 2016; Luo et al. 2016; Ma et al. 2018). We tested
whether CRISPR/Cas9 can work in TSR6. A sgRNA
targeting sequence to disrupt the gene encoding tMDA5 was
annealed and ligated into the pX330-T7 vector expressing
mCherry. The targeting plasmid expressing sgRNA and
Cas9 proteins was delivered into TSR6 by transfection.
About 48 h post-transfection, cells expressing mCherry were
sorted by flow cytometry. Single cells were picked up for
growing into individual colonies. A disrupt mutation
c.21_22insA was observed in the exon 1 of tMDA5 in two

single cell colonies KO9 and KO10 (Fig. 4a). This single base
insert leads to knockout of tMDA5 protein (Fig. 4b). Thus, the
CRISPR/Cas9-mediated-gene editing could work in TSR6.

The TSR6 cell line has an innate immune response
to viral infection

After sensing viral invasion, interferons (IFNs) are produced to
induce the expression of interferon-stimulated genes (ISGs) to
establish an antiviral state (Borden et al. 2007; Schneider et al.
2014). Currently, the mRNA expressions of IFNs and ISGs are
major markers to indicate innate immunity evocation as the
IFNs and ISGs mRNA are not detectable during a resting state
(Borden et al. 2007; Schneider et al. 2014). To assess whether
viral infection could induce the innate immune response in
TSR6, the mRNA expression levels of tIFNB1 and tMx1,
which belong to IFNs and ISGs respectively, were determined
in TSR6 after challenge with RNA virus NDVand DNA virus
HSV-1. In general, NDV infection induced the tIFNB1 expres-
sion in a dose- and time-dependent manner (Fig. 5a).
Specifically, higher titer of NDV induced a higher mRNA level

Fig. 3 Transfection efficiency of
the TSR6 cell line. a TSR6 cells
were transfected with pEGFP-N2
by X-tremeGENE HP (HP) or
Lipofectamine 3000 (Lipo3000)
for 24 h, then checked for EGFP
expression by a fluorescence
microscope (× 100
magnification). The ratio of
EGFP expressing cells was
estimated by flow cytometry at
48 h post-transfection. b
Quantification of cell viability
after transfection. The non-
transfected (NC) and transfected
(HP and Lipo3000) TSR6 cells
were cultured for 48 h before
counting the cell number. The
expression levels of tMDA5
mRNA (c) and protein (d) in
TSR6 cells transfected with the
negative control siRNA (siNC)
and sitMDA5. Transfected cells
were harvested at 48 h post-
transfection and were analyzed by
quantitative real-time PCR and
Western blot. eOverexpression of
tMDA5 in TSR6 cells. Cells were
transfected with empty vector
(Vector) and pCMV-tMDA5-3tag
(tMDA5), respectively.
Expression of tMDA5 protein
was analyzed by Western blot.
The tree shrew housekeeping
gene β-actin was used as the
control for normalization
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of tIFNB1. At 1 MOI of NDV, the mRNA expression level of
tIFNB1 was only slightly but significantly induced, while at 2
MOI and higher titers, the tIFNB1 mRNA was induced at a
significantly higher level compared to that of 1 MOI of NDV.
In cells infected with the same concentration of NDV, the
tIFNB1 mRNA expression was significantly increased at 12 h
compared to 6 h. The mRNA level of tMx1 was induced as
early as 12 h after NDV infection in a dose-dependent manner
(Fig. 5a). Infection with the HSV-1 induced tIFNB1 mRNA
level in a similar way to NDV (Fig. 5b). However, the
mRNA level of tMx1 was significantly induced at 6 h by
HSV-1 infection (5 MOI), and higher concentration of HSV-1
dramatically induced the mRNA expression of tMx1 at 12 h
(Fig. 5b). These results indicated that the TSR6 possessed the
innate immune response to viral infections.

Discussion

Tree shrew is a promising experimental animal for infectious
disease research (Li et al. 2018; Yao 2017; Zheng et al. 2014).
At the present, many literatures have described the pathology
and physiology of tree shrews with viral infections (Li et al.
2018). In our previous study, we provided a publicly available

annotated genome sequence of the Chinese tree shrew and
established the tree shrew database (www.treeshrewdb.org)
(Fan et al. 2013; Fan et al. 2014). These efforts offered a solid
base to elucidate the basic biological properties and to create
animal models using this species (Yao 2017). Furthermore, the
recent successful genetic manipulation of the tree shrew has
opened a new avenue for the wider usage of this animal in
biomedical research (Li et al. 2017; Yao 2017). However, the
understanding of the innate immunity and host-viral interac-
tion are limited by the lack of a suitable cell line. There was a
report for using tree shrew fibroblast cells to study dengue
virus infection (Kayesh et al. 2017). In our recent studies to
characterize the tree shrew immune genes (Xu et al. 2015,
2016; Yao et al. 2019; Yu et al. 2014, 2016), we used tree
shrew primary renal cells, and had to frequently sacrifice the
animal for isolating cells. It is necessary to have a cell line that
is capable for initial characterization. In this study, we success-
fully established a tree shrew renal cell line and characterized
its cellular responses to viral infections. This cell line could
serve as a good resource for studying tree shrew.

Normal mammalian cells have a limited life span in culture;
although the spontaneous immortalization could occur, this
event had been seldom observed (Maqsood et al. 2013;
Ramboer et al. 2014). The SV40LT is frequently used to aid
cellular immortalization (Ahuja et al. 2005) via multiple
mechanisms (Ramboer et al. 2014). First, it inactivates at least
three growth suppressors, pRB, p53, and SEN6 (Ahuja et al.
2005). Second, it induces telomerase activity which is critical
in cellular immortalization (Ahuja et al. 2005; Foddis et al.
2002). Besides these effects, the SV40LT possesses other
additional activities that could also potentially contribute
to cellular immortalization (Ahuja et al. 2005). All these
unique roles of SV40LT rendered it as a powerful tool for
artificial cellular immortalization. We established the sta-
ble tree shrew renal cell line by transducing the SV40LT
antigen to TSPRCs. As the TSPRCs were mixtures of
many types of cells, cells immortalized from TSPRCs
would also contain a heterogeneous cell population. In or-
der to improve cell homogeneity, we picked up single cells
to obtain monoclonal immortalized shrew renal cell line
TSR6. Morphological analysis showed that both TSPRCs
and TSR6 displayed a similar morphology, and TSR6
displayed a good proliferative activity.

The cytokeratin proteins form tonofilaments which are
present in almost all vertebrate epithelia (Nelson 1983).
Since cytokeratins are usually not detectable in non-
epithelial cells including fibroblasts, muscles, and nerves, im-
munohistochemical staining of cytokeratin facilitates the de-
tection and identification of epithelial cells in tissue section
and in culture (Nelson 1983). Cytokeratin 18 immunostaining
has traditionally been used for the identification of fully dif-
ferentiated epithelial cells (Wang et al. 2014). Vimentin is one
of the four types of intermediate filaments which play a

Fig. 4 Successful knockout of the tMDA5 gene in TSR6 cells by using the
CRISPR/Cas9 technology. a Sequencing chromatographs showing the
introduced mutations in the tMDA5 gene in two lines of TSR6 cells with
gene editing (tMDA5-KO9 and tMDA5-KO10) and the unedited TSR6
cells (wild type), and bWestern blot for the tMDA5 protein in these cells.
The GAPDH was used as the loading control in the Western blot
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structural and/or tension-bearing role in many cells originating
from the mesenchyma, and its expression has been thought to
be a fibroblast cell marker (Banerjee et al. 2016; Minin and
Moldaver 2008). We detected both cytokeratin 18 and
vimentin in TSR6 at the mRNA and protein levels, suggesting
that the TSR6 cells were of epithelial-lineage. We further
showed that the TSR6 cells could be easily transfected by
the commonly used DNA transfection reagents, albeit the
transfection efficiency was not very high. Therefore, it would
be necessary to further optimize the transfection to achieve a
higher efficiency. By way of example, we showed that the
CRISPR/Cas9-mediated gene editing and siRNA interference
worked in TSR6. Collectively, TSR6 is suitable for clarifying
the function of certain gene in vitro by overexpression, knock
down, and knockout assays.

The innate immunity is the first line of host defense against
pathogens which is initiated by the detection of invading path-
ogens via PRRs (Akira et al. 2006). After the detection of
invading pathogens, PRRs induce the IFNs expression by a
series of signal transduction processes, subsequently upregu-
late the ISGs expression to establish an antiviral state (Akira
et al. 2006; McNab et al. 2015; Schneider et al. 2014). NDV is
a member of the genus Rubulavirus of the subfamily
Paramyxovirinae (family Paramyxoviridae , order
Mononegavirales) which contains a non-segmented, single-
stranded RNA genome of negative polarity (de Leeuw and
Peeters 1999). HSV-1 belongs to the Alphaherpesvirinae sub-
family, and it is a typical double-stranded DNAvirus (Su and
Zheng 2017). We used both viruses as the representatives of
RNA virus and DNA virus for stimulation. Both NDV and
HSV-1 induced the tIFNB1 and tMx1 mRNA expression in a
dose-dependent manner in TSR6. Therefore, the TSR6 pos-
sesses an intact innate immune response to viral infections,
indicating that this tree shrew cell line is suitable for studying
innate immunity upon viral infection.

In summary, we established a stable cell line from the
Chinese tree shrew primary renal cells, which retains the mor-
phological features of the primary cells. This cell line could be
well transfected by commercial transfection reagents and
could be edited by using the CRISPR/Cas9 technology.
Furthermore, TSR6 possesses an intact innate immune reac-
tion to viral infections. We believe that this cell line may be
helpful for mechanistic studies of tree shrew innate immunity
and other in vitro researches.
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