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Longitudinal transcriptome analyses show robust T cell
immunity during recovery from COVID-19
Hong-Yi Zheng1, Min Xu1, Cui-Xian Yang2, Ren-Rong Tian1, Mi Zhang2, Jian-Jian Li2, Xi-Cheng Wang2, Zhao-Li Ding3, Gui-Mei Li3,
Xiao-Lu Li3, Yu-Qi He3, Xing-Qi Dong2, Yong-Gang Yao 1,4,5 and Yong-Tang Zheng 1,4

Understanding the processes of immune regulation in patients infected with the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is crucial for improving treatment. Here, we performed longitudinal whole-transcriptome RNA sequencing on
peripheral blood mononuclear cell (PBMC) samples from 18 patients with coronavirus disease 2019 (COVID-19) during their
treatment, convalescence, and rehabilitation. After analyzing the regulatory networks of differentially expressed messenger RNAs
(mRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) between the different clinical stages, we found that humoral
immunity and type I interferon response were significantly downregulated, while robust T-cell activation and differentiation at the
whole transcriptome level constituted the main events that occurred during recovery from COVID-19. The formation of this T cell
immune response might be driven by the activation of activating protein-1 (AP-1) related signaling pathway and was weakly
affected by other clinical features. These findings uncovered the dynamic pattern of immune responses and indicated the key role
of T cell immunity in the creation of immune protection against this disease.
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INTRODUCTION
Since December 2019, a new zoonotic severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has swept the world, causing
a variety of clinical syndromes collectively termed coronavirus
disease 2019 (COVID-19).1–3 The World Health Organization declared
a pandemic in March 2020. The symptoms of COVID-19 are fever,
dry cough, fatigue, diarrhea, conjunctivitis, and pneumonia.1 Most
people do seem to be less affected, either remaining totally
asymptomatic or having only mild symptoms. However, some
people develop a severe pneumonia, acute respiratory distress
syndrome (ARDS) or multiple organ failure.2,4 It is currently believed
that severe COVID-19 pathogenesis may be mediated by a unique
immune response disorder, and the host antiviral immune response
affects the severity of the disease and the clinical outcome.5,6

The immune pathology caused by SARS-CoV-2 and the immune
protection against COVID-19 had received extensive attention.
Recent studies had shown that immune system disorders, such as
lymphocytopenia and inflammatory cytokine storm, are associated
with the severity of the SARS-CoV-2 infection.1,7 Type I interferon
(IFN-I) not only has the ability to clear the virus, but also can
cooperate with inflammatory factors to promote the severe
development of COVID-19.8,9 In particular, the inflammatory,
exhausted and activated state of T cells affects the severity of
COVID-19 symptoms, whereas a robust T cell immune response in
patients may affect the predisposition to disease and also prevents
re-infection.10–12 The humoral immunity against SARS-CoV-2 works

rapidly but may not provide long-lasting immunity, as revealed by
recent evaluation of the decay of anti-SARS-CoV-2 antibodies in
patients with COVID-19.13,14 These studies had greatly expanded
our understanding of COVID-19 pathophysiology and immunology.
However, we are still unclear about the main events of the immune
regulation process of patients during their recovery from illness.
Transcriptome analyses are very suitable for the study of viral

infection immunology and allow for an understanding of the
immune response dynamics and gene regulatory networks.
Recent transcriptome analyses of patients with COVID-19 have
shown the dynamics of the immune responses following infection
with SARS-CoV-2.6,7,9,15,16 Here we characterized the longitudinal
transcriptome changes in peripheral blood mononuclear cells
(PBMC) of 18 COVID-19 patients with mild, moderate or severe
symptoms at three clinical stages (treatment, convalescence, and
rehabilitation). Our results showed the immune remodeling
processes in patients at the different stages of their illness and
revealed the core role of T cell immunity.

RESULTS
Clinical features of SARS-CoV-2 infected patients with mild,
moderate or severe symptoms during recovery from COVID-19
From January 17 to February 19, 2020, 18 patients (11 male and 7
female) at the Yunnan Infectious Disease Hospital, Kunming,
China, with COVID-19 and SARS-CoV-2 infection confirmed by
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laboratory testing, were recruited in this study. According to the
guidelines for diagnosis and management of COVID-19 (6th
edition) issued by the National Health Commission of China, 5
patients (severe group, n= 5) developed severe pneumonia by
imaging examination, with the percutaneous oxygen saturation
(SpO2) less than 93% or respiratory rate (RR) exceeding 30
breaths/min in the resting state, and were diagnosed as severe
COVID-19; 7 patients (moderate group, n= 7) had fever, dyspnea,
and other respiratory symptoms, with computed tomography
(CT) imaging findings of pneumonia, but did not meet the severe
criteria, and were classified as having moderate COVID-19; the
remaining 6 patients (mild group, n= 6) were diagnosed as mild
based on their milder clinical symptoms and no obvious
pneumonia (Fig. 1a).
Among these patients, 16 were treated with the recombinant

human IFN-α-2b with/without other antiviral drugs immediately
after admission, and 2 patients in the mild group were treated
with arbidol hydrochloride instead of IFN-α-2b. After the body
temperature was normal for more than 3 days and at least two
consecutive SARS-CoV-2 nucleic acid tests for respiratory samples
(throat swab, nasopharyngeal swab, and sputum) were negative at
least one day apart, the patients were isolated and entered the
convalescence stage. From February 24 to April 2, 2020, all the
patients were discharged from the hospital in batches and
entered the rehabilitation stage based on the following criteria:
the respiratory symptoms had improved significantly, SpO2 and RR
returned to normal in severe patients, CT imaging of the lungs
showed obvious absorption of inflammation, and the nucleic
acid tests were negative on 2 consecutive occasions (Fig. 1b,
Supplementary Table 1). Blood samples were collected at
appropriate times for our later studies.

Enhanced immune regulation drives the immune system
remodeling during recovery from COVID-19
We obtained the whole transcriptome data of 47 PBMC samples
from 18 patients with COVID-19 during the treatment, convales-
cence, and rehabilitation stages (Fig. 1c). Clinical stage-related
643 differentially expressed genes (DEGs; by 39 samples), 405
differentially expressed long non-coding RNAs (DElncRNAs; by
39 samples) and 67 differentially expressed microRNAs (DEmiR-
NAs; by 47 samples) were identified based on the rule of false
discovery rate (FDR) < 0.05 (Fig. 2a, b; Supplementary Fig. 1). The
linear regression slope of the log2 fold change of DEG, DEmiRNA
target genes (n= 309) and DElncRNA regulated genes (n= 405)
was further performed on Gene Set Enrichment Analysis (GSEA).17

The gene ontology (GO) semantic clustering analysis showed
that the gene sets enriched by differentially expressed coding and
non-coding RNAs did not differ in main categories. Only the gene
sets of regulation of hemopoiesis, regulation of inflammatory
response, mRNA splicing via spliceosome and epithelial cell
proliferation were upregulated at the whole transcriptome level
during recovery from COVID-19 (Fig. 3a; Supplementary Fig. 2),
which contained many transcription factor genes (e.g., DDIT3,
NR4A3, ZEB1, KLF10, JUNB, and JUN), phosphorylation regulatory
genes (e.g., AREG, DUSP8, OSM, MAP3K8, and SOCS3), and
interferon-stimulated genes (ISG; e.g., TNF, IL1B, CXCR4, CD69,
and IER5) (Fig. 3b). The innate immune response represented by
the type I interferon (IFN-I) signaling pathway and the humoral
immune response represented by B cell receptor signaling
pathway were grouped into downregulated gene sets that are
enriched with DEGs and DEmiRNAs (Fig. 3a; Supplementary Fig. 2).
A large number of immunoglobulin genes were downregulated, in
addition to the downregulation of antiviral immune genes such as

Fig. 1 Study design of whole transcriptome sequencing for PBMCs from patients with COVID-19 during recovery. a Patients are divided into
mild, moderate and severe groups according to clinical symptoms of each one. b Timeline of the disease course of 18 patients infected with
SARS-CoV-2. RT-PCR indicates the PCR test of SARS-CoV-2 nucleic acid. A positive RT-PCR (marked by “+”) indicates that the SARS-CoV-2
nucleic acid was found in the throat swab, nasopharyngeal swab, sputum or other samples, which were distinguished by using different
colors. “−”, negative RT-PCR. The solid red lines stand for treatment stage, solid blue lines for convalescence stage and doted green lines for
rehabilitation stage. The sampling days were marked below this line. The inverted triangle symbol is used to mark the time point for collecting
PBMC samples at each stage. c A flowchart showing the process of library construction and RNA sequencing of PBMC samples from patients
with COVID-19
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IFI27, OAS1, IFIT3, FADD, and RSAD2 (Fig. 3b). These observations
suggested that immune regulation plays a key role in the
remodeling of innate and adaptive immunity during the recovery
from COVID-19.
A large number of gene sets involved in immune cell

differentiation were also found to be upregulated during recovery
from COVID-19, including autophagy, cell cycle, cytokine produc-
tion, regulation of T cell differentiation, response to interleukin-1,
immune system development, and regulation of NIK/NF-κB
signaling. Furthermore, decrease of the enrichment scores of the

gene sets related to blood coagulation and platelet activation also
reflected that these comorbidities of abnormal blood coagulation
are being reduced in these patients (Fig. 3a; Supplementary Fig. 2).

Elevated T cell activation and differentiation are core events
during recovery from COVID-19
A total of 8 differential expression patterns were clearly discerned
in patients with COVID-19 at the treatment, convalescence, and
rehabilitation stages, respectively (Fig. 2c). Using enrichment
analysis grouped by these expression patterns, we found that

Fig. 2 Differentially expressed genes (DEG), miRNAs (DEmiRNA), and lncRNAs (DElncRNA) in PBMC samples from patients with COVID-19
during the recovery. a A heatmap showing the expression profiles of 643 DEGs. The blue-red gradient square maps the scaled log2 value of
transcripts per kilobase million (Log2 TPM) for each DEG in a sample. The grouping information on the left indicates genes with different
differential expression patterns. The colored bars above the heatmap refer to the clinical stage of each sample. The gene function annotation
on the right marks the interferon-stimulated genes (ISG), transcription factor (TF) and phosphorylation regulatory genes (Phospho) in DEGs.
The hub genes with a more significant differential expression in the function networks constructed by all DEGs are marked with the respective
gene names. b A heatmap showing the expression profiles of 67 DEmiRNAs and 405 DElncRNAs. The blue-red gradient square maps the
scaled log2 TPM of each DElncRNA, or the scaled log2 value of counts per million (Log2 CPM) of each DEmiRNA in a sample. The gene function
annotation shows the number of target genes for each non-coding RNA. When the target gene is a DEG, we annotate the regulation module
in the format of “non-coding RNA name - target gene name” on the right. c By comparing the P value and TPM/CPM at three different clinical
stages, DEG, DEmiRNA or DElncRNA can be further clustered into 8 expression patterns. Each pattern reflects the characteristics of its RNAs
being upregulated (up), downregulated (down) or stayed for no change (stay) at the convalescence (C) and rehabilitation (R) stages relative to
the treatment (T) stage. Ns, *, **, ***, ****: p > 0.05, ≤0.05, ≤0.001, ≤0.0001, respectively

Longitudinal transcriptome analyses show robust T cell immunity during. . .
Zheng et al.

3

Signal Transduction and Targeted Therapy           (2020) 5:294 



DEGs, which are downregulated only at the rehabilitation stage
(stay-down), enriched by a large number of antiviral genes and
IFN-I signaling genes (e.g., OAS1, IFIT3, AIM2, IFIT1, and FADD),
positive regulatory genes of cytokine signaling pathway (e.g.,
TLR2, IL6R, P2RX7, RSAD2 and AIM2), as well as some chemokine
receptor genes (e.g., CCR1, CCR5, CMKLR1, CX3CR1, and CXCR2).
However, humoral immunity was attenuated earlier than innate
immunity. DEGs that downregulated from the convalescence
stage to the rehabilitation stage (down-stay or down-down) were
enriched in GO terms such as humoral immunity, B cell immunity,

B cell activation and Fc receptor signaling (Fig. 4a, Supplementary
Fig. 3).
One prominent feature of the enrichment analysis was that

many DEGs upregulated in the convalescence, and rehabilita-
tion stages (stay-up or up-stay) are involved in T cell activation
and differentiation, such as PIK3R1, IFNG, CYLD, RHOH, BCL3,
MAP3K8, and ICOS. Moreover, a group of DEGs that upregulated
in the convalescence stage and then continued to be
upregulated in the rehabilitation stage (up-up) were mainly
composed of genes that regulate protein kinase activity,

Fig. 3 Gene set enrichment analysis (GSEA) showing an immune system remolding at the whole transcriptome level. a The bubble-pie
graphs displaying upregulated and downregulated gene ontology (GO) gene sets enriched by the differentially expressed mRNAs, miRNAs,
and lncRNAs. The color refers to the indicated type of transcripts enriched for a gene set. The bubble size maps the sum enrichment scores of
all RNA types in a gene set. The X and Y values of a gene set are calculated by REVIGO’s GO semantic space algorithm.69 The ellipses refer to
clusters formed by gene sets with a high semantic similarity. b GSEA plot showing the distribution of the upregulated or downregulated gene
sets and the enrichment scores based on DEGs for all samples. The heat map shows the core genes in these gene sets of different clinical
stages for all samples, mild, moderate and severe groups, respectively. The blue-red gradient square maps the slope of the linear regression
equation of Log2 fold change of DEG
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including TNF, CXCR4, SOCS1, JUN, SOCS3, PDCD4, DUSP8, etc.
These genes are actively involved in the regulation of MAP
kinase activity and JAK-STAT signaling pathway (Fig. 4a,
Supplementary Fig. 3), suggesting that the T-cell immunity
was elevated during recovery from COVID-19 under a

chronological regulation. Only 69 DEGs showed significant
differences between each comparison of mild, moderate and
severe groups. These genes were mainly enriched in GO terms
of negative regulation of phosphorylation, leukocyte migration
and regulation of hematopoiesis (Supplementary Fig. 4).

Fig. 4 Gene ontology (GO) enrichment analysis identified T cell immunity as the main regulatory target during the recovery of COVID-19.
a GO enrichment results of DEGs in 8 differential expression clusters defined in Fig. 2b. The numbers of significantly enriched genes in each
cluster were included in parentheses. b GO enrichment results of interferon-stimulated genes (ISG), transcription factor genes (TF), and
phosphorylation regulatory genes (Phospho) in DEGs. c, d GO enrichment results of the genes targeted by DEmiRNAs (c) and DElncRNAs (d) in
6 differential expression clusters defined in Fig. 2c. The bubble size indicates the gene enrichment ratio (Generatio) of a biological process GO
term, with color maps the FDR value (p.adjust) of the enrichment analysis
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Multiple levels of regulation participate T cell activation and
differentiation during recovery from COVID-19
Further enrichment analysis of DEGs related to interferon,
transcription factor and phosphorylation regulation revealed that
the activation and differentiation of T cells are the main targets of
their regulation. PRDM1 (up-stay), RORA (stay-up), BCL6 (up-stay),
and ZEB1 (stay-up) acted as important transcription factors for
controlling the differentiation of T cells and mediating the
differentiation of tissue-resident T cells, Th17 cells, follicular helper
T cells, and memory T cells, respectively.18–21 For phosphorylation
regulatory DEGs, IFNG (stay-up), DUSP10 (up-stay) and SOCS1 (up-
up) were enriched in regulatory T cell differentiation, while stay-
down genes FCGR2B, CEACAM1, and P2RX7 were enriched in T cell
mediated cytotoxicity. Upregulated ISGs, such as RIPK2 (up-stay),
IFNG (stay-up), CD83 (up-stay) and SOCS1 (up-up), were mostly
enriched in T cell activation. Among them, RORA (stay-up), NFKBIZ
(up-stay) and ZC3H12A (stay-up) were enriched in Th17 differ-
entiation, while BCL3 (stay-up) and BCL6 (up-stay) were enriched in
Th2 differentiation (Fig. 4b).
Consistent with the changes of DEGs, there were many

upregulated DElncRNAs that positively regulate the differentiation
of lymphocytes and T cells at the convalescence and rehabilitation
stages. The regulation of T cell differentiation by DEmiRNAs mainly
occurred at the rehabilitation stage. The stay-down miRNAs let-7b-
5p, miR-103a-2-5p, miR-200c-3p and miR-2115-3p were signifi-
cantly downregulated, while their target genes (RASGRP1, CDK6,
ZEB1, and ATG5, respectively) were significantly upregulated. The
stay-up DElncRNAs RORA-AS-7, RORA-AS-8, ITPKB-AS-1, RUNX1-AS-
8, STAT3-AS-1, and MALT1-AS-2 were enriched in differentiation of
T-helper cells. In addition, the stay-up DElncRNAs MAP3K8-AS-1,
RASGRP1-AS-1, RASGRP1-AS-2, LINC-CD47-1, LINC-CD44-1, PREX1-
AS-2, TNFRSF1B-AS-1, and TNFRSF1B-AS-2 were enriched in T cell
activation (Fig. 4c, d).

The AP-1 linked signaling pathway plays a key role in T cell
activation and differentiation during recovery from COVID-19
Using the functional network analyses of DEGs, DEmiRNAs and
DElncRNAs, we found that the TNF, MAPK, and NF-κB signaling
pathways are the most significantly changed pathways during
recovery from COVID-19 (Supplementary Fig. 3-6). These networks
are closely linked with inflammatory factor genes TNF and IL1B,
and transcription factor AP-1 subunit gene JUN. The AP-1
connected nodes were at the core of the enriched KEGG maps,
including Toll-like receptor signaling pathway, IL-17 signaling
pathway and PD-L1 expression and PD-1 checkpoint pathway (Fig.
5a). The activation of AP-1 and NF-κB signals caused an increased
expression of inflammatory factors such as TNF-α, IL-1β, IL-8, MIP-
1α and MIP-1β according to the KEGG enrichment analysis
(Supplementary Fig. 7), which might be detrimental to COVID-19
rehabilitation. Concordantly, for downstream genes of AP-1, the
expression levels of some chemokine genes (e.g., CCL2, CXCL1,
CXCL2, and CXCL10) were downregulated, while the expression
levels of immune negative regulation genes (e.g. BCL3, NFKBIA,
SOCS3, and TNFAIP3) were upregulated during the COVID-19
recovery (Fig. 5b). These results indicated that the activation of the
AP-1 linked pathway does not cause excessive inflammation and
was more likely to play a role in immune regulation.
The transcription factor AP-1 subunit genes FOSL2 and JUNB

were also upregulated at the rehabilitation stage, and the non-
coding RNAs (e.g., FOSL2-AS-1, LINC-JUND-1, and miR-494-3p) that
regulate these genes were also significantly differentially
expressed. Some genes that interact with JUN, such as HIF1A,
can enhance the effector function of T cells and promote virus
clearance,22 and were regulated by DElncRNAs HIF1A-AS-1 and
LINC-HSP90AA1-1. Other genes need to work with AP-1 for
controlling T cell differentiation, such as RORA,23 were regulated
by a variety of DElncRNAs, including RORA-AS-7, RORA-AS-8,
miR-20b-5p, miR-12136, miR-539-5p, and miR-501-3p (Fig. 5c). In

addition, we found that JUN, PIK3R1, IFNG, CXCR4, SOCS3, HIF1A,
and other significantly regulated genes had the highest con-
nectivity in the GO, KEGG, and protein–protein interaction (PPI)
networks (Fig. 5d). Therefore, the AP-1 linked signaling pathway
acted as a core to regulate T cell activation and differentiation at
whole transcriptome level during recovery from COVID-19.

The activation and differentiation of T cells are associated with
various clinical features in patients with COVID-19
To explore the impact of other clinical features on recovery-related
whole-transcriptome, we made an analysis of the whole
transcriptome using a weighted correlation network analysis
(WGCNA). A total of 18 expression modules were discerned, in
which the black and tan modules were significantly positively
correlated with the clinical stage, but had no significant
correlations with other clinical features. Oppositely, significant
negative correlations with age, clinical type, and comorbidities
were found in the light cyan module, but it did not show a
significant correlation with the clinical stage (Fig. 6a, b). It seemed
that the transcriptome changes during the recovery process are
weakly affected by other clinical features. Specifically, the black
module contained many genes and non-coding RNAs related to
the regulation of phosphorylation, hematopoiesis and transferase
activity, such as ZC3H12A, DUSP8, CD83, JUNB, NR4A3, OSM, SOCS3,
JUN, TNF, MAP3K8-AS-1, RIPK1- AS-1, and FOSL2-AS-1. The
transcripts grouped into the tan module were mostly involved
in nucleosome assembly and cell cycle, such as PLK2, ID2, H4C15,
H3C1, H1-2, H1-3, LINC-H2BC12-1, RCC1-AS-1, and ID2-AS-1. Many
genes in these two modules were differentially expressed genes
as described above. Although the GO terms enriched by RNAs in
the light cyan module overlapped with the black module, it was
more concentrated on GO terms related to T cell activation, T cell
differentiation, lymphocyte proliferation and myeloid leukocyte
differentiation (Fig. 6c). We also discerned the co-expression
pattern of genes belonging to the light cyan module. The hub
genes of the light cyan module were enriched in T cell
differentiation, such as SATB1, LEF1, CCR7, CAMK4, IL6ST, TCF7,
IL7R, SIRPG, and TMIGD2, and lncRNAs of CCR7-AS-1, LEF1-AS-1,
LINC-CCR7-2, LINC-TCF7-1 and TCF7-AS -1, and most of them were
mainly expressed in low-level differentiated T cells (Fig. 6d).24–27

The results showed that various clinical features affect the
patient’s T cell immunity, but cannot change its tendency to
become robust during recovery from COVID-19.

DISCUSSION
In this study, we systematically analyzed the whole transcriptome
characteristics of PBMC samples from COVID-19 patients with
mild, moderate, and severe symptoms at three different time
points during their treatment, convalescence, and rehabilitation.
The results showed a robust T-cell immune response, but a
weakening innate and humoral immunity during recovery from
illness, regardless of the clinical types or disease severity, as
demonstrated by the altered levels of mRNAs, miRNAs and
lncRNAs involved in T cell activation and differentiation.
Many viruses, including SARS-CoV-2, have evolved escape

mechanisms against the antiviral activity of IFN-I.28 Recent studies
had shown that although the production of TNF and IL-6 was
increased, and the NF-κB-driving inflammatory response was
highly activated, the IFN-I response in seriously ill COVID-19
patients and rhesus monkeys infected with SARS-CoV-2 were still
impaired.9,29 These findings indicated that IFN-I should be treated
as a target for the treatment of COVID-19. In fact, the patients in
our study received IFN-α treatment immediately on their
admission to hospital and achieved good results. The IFN-I
treatment could enhance the cytotoxic function of the patient’s
NK and CD8+ T cells,30,31 inhibited hematopoietic function and
caused the alteration of peripheral blood neutrophils and
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thrombocytopenia.32 In addition, IFN-I treatment directly or
indirectly triggered the signal cascade of JAK-STAT, MAPK, PI3K,
and NF-κB pathways to participate in the regulation of interferon
response.33–35 Therefore, the changes at the transcriptome levels
of our patients might partially come from interferon therapy.
However, despite the fact that the patient’s MAPK and NF-κB
signaling pathways were still active, a lot of ISG and the gene sets
of positive regulation of T cell cytotoxicity and JAK-STAT signaling
pathway were downregulated at the rehabilitation stage, suggest-
ing that the robust regulation of immune response may not
directly come from interferon therapy.
Humoral immunity plays an important role in the prevention

of infectious diseases, but its role in COVID-19 is still unclear.

A detailed clinical report showed that the circulating antibody-
secreting B cells appeared in the blood on the 7th day, and IgM
and IgG antibodies gradually increased from the 7th day after
infection and maintained high levels until the 20th day.36

However, multiple studies found that in the first 3 months after
infection, the level of antibodies against SARS-CoV-2 in patients
who have recovered from mild symptoms reduced sharply, with a
predicted exhaustion within a year.13,37 These findings mean that
although antibodies against SARS-CoV-2 appear quickly, most
people may not have lasting immunity. The most recent report
on re-infection of SARS-CoV-2 in a human seemed to support
this speculation.38 In our study, we found that the humoral
immune response was attenuated at the convalescence stage

Fig. 5 Gene function network revealed a core role of the AP-1 linked signaling pathways during the recovery of COVID-19. a A network
showing the relationship between genes and enriched KEGG pathway. The genes displayed are selected from the DEGs and the genes
regulated by DEmiRNAs or DElncRNAs with a more significant differential expression and a higher connectivity. The color maps the linear
regression slope of Log2 fold change of a gene. The size of the circle is proportional to the number of genes enriched in a KEGG pathway. b A
KEGG graph showing the interactions of genes involved in the TNF signaling pathway. The color indicates linear regression slope of Log2 fold
change of a gene. c A protein–protein interaction network (PPI) showing the interactions between genes and non-coding RNA. The genes
displayed are selected from the top hub genes with the most significant differential expression. d A line graph showing the expression profiles
of the main hub genes during COVID-19 recovery. The color indicates samples with different clinical types. T, treatment stage; C,
convalescence stage; R, rehabilitation stage. The data are shown as mean ± SD
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(~20–40 days), and there are no significant differences between
patients with varying clinical features. The fast decline of humoral
immunity against COVID-19 will pose challenges to vaccination,
and the detailed mechanism underlying this awaits further study.
A large number of studies have shown that SARS-CoV-2

infection can cause a more pronounced lymphocytopenia in

patients with moderate and severe COVID-19, as reflected by the
decreased level of T cells, including Th1, Treg, and CD8+

T cells.1,39,40 In addition, neutrophils increased and monocytes
decreased in COVID-19 patients.39,41 These abnormalities may be
reversed in some immune cells after recovery. For example,
Sekine, et al.42 found that the SARS-CoV-2 specific T cells in acute

Fig. 6 Weighted correlation network analysis (WGCNA) showed the impact of multiple clinical features on the transcriptomic profiling of
peripheral blood cells from patients with COVID-19 during the recovery. a A hierarchical clustering tree showing all modules based on top 8000
most variably expressed mRNAs/lncRNAs and top 600 most variably expressed miRNAs in all samples. b A matrix plot showing the correlations
between modules (Y axis) and clinical factors (X axis). The color and the number outside the brackets of a square indicate the Pearson’s correlation
r value between a module and the corresponding clinical factor, and the number inside the brackets indicates the Pearson’s correlation p value.
c A bubble plot showing the GO enrichment analysis results of the black, light cyan and tan modules. The numbers in brackets on the X axis
indicate the total number of significantly enriched genes in each module. The bubble size indicates the gene enrichment ratio (GeneRatio) of a GO
term, with color referring to the FDR value (p.adjust) of enrichment analysis. d A correlation network showing the co-expression pattern between
genes and non-coding RNAs in the light cyan module
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infection showed a highly activated cytotoxic phenotype, while
these T cells in the recovery stage had multiple functions and
exhibited a stem cell-like memory phenotype; Wen, et al.43

showed that the T and B cell clones were highly expanded in
COVID-19 recovery. In our study, we also found an enhanced
transcription of genes involved in the activation and differentia-
tion of T cells during the recovery from COVID-19, indicating that T
cell immunity was strengthened.
Further analysis of the functional network of differentially

expressed whole transcriptomes showed that AP-1 signal con-
nects MAPK signal and T cell function and plays a key regulatory
role. The MAPK signal cascade is essential for regulating AP-1
transcriptional activation and DNA binding activity, while AP-1 has
a pleiotropic effect on the process of T cell activation, differentia-
tion, and exhaustion.44 The synergy of NFAT and AP-1 would
stimulate gene expression after immune response, including IL-2,
IFN-γ, TNF-α, GM-CSF, IL-4, FasL, CD25.45 The lack of AP-1 led to
the repression of downstream genes and blocked the activation
and proliferation of T cells, eventually leading to T cell anergy.46

Note that the gene set of chromatin assembly was found to be
significantly upregulated during the recovery process. Since AP-1
is present in most activated specific open chromatin regions, the
binding of AP-1 and the opening of chromatin during T cell
activation are conducive to the formation of super enhancers, and
the activity of AP-1 helps the activated T cells to form a specific
epigenome.47 In our study, we found that active T cell immunity is
the main immune feature during recovery from COVID-19, which
is compatible with a strong AP-1 signaling.
The impact of the clinical features of COVID-19 patients on their

immune response has always received much attention. Several
recent studies found that the transcriptome of lung tissue and
peripheral blood from severe COVID-19 patients was significantly
enriched in a large number of ISGs for IFN-I response and a high
level of IFN-α, TNF-αand IL-6 compared to healthy people and mild
patients.8,48 Regarding immune cell function, the loss of the
polyfunctionality and the increased level of exhaustion of T cells
were important characteristics that distinguish severe from mild
patients.49 The expression of genes induced by SARS-CoV-2
infection increased with aging.50 At the same time, the activation
of the innate immune system, the disorder of the adaptive
immune system and the inflammatory signal of the elderly were
also increasing.51 These reasons might account for a higher
susceptibility to SARS-CoV-2 in the elderly. There was evidence
that during SARS-CoV-2 infection, female patients have stronger
levels of T cell activation than male patients, while male patients
have higher plasma levels of natural immune cytokines (such as IL-
8 and IL-18).52 The mechanism by which chronic metabolic
comorbidities (such as obesity, type 2 diabetes, and metabolic
syndrome) affect COVID-19 has not been fully elucidated, but it
was generally believed that it interacts with age and gender to
cause immune metabolic disorders and chronic systemic inflam-
mation, which aggravate the excessive inflammation induced by
SARS-CoV-2 infection.53 In our study, there were very few DEGs
between groups of different clinical types during recovery from
COVID-19. The results of WGCNA showed that other clinical
features have limited influence on the trend of clinical stage-
related transcriptome changes. The pattern that patients would
have the same strong T cell immune response after recovery from
COVID-19 is very promising for the prevention and treatment of
COVID-19 and is conducive to the maintenance of herd immunity.
The current study has several limitations. First, we did not

perform a fine-grained immune infiltration analysis of immune cell
subpopulations using flow cytometry or single-cell analysis in this
study, simply because we did not have sufficient samples for these
assays. In addition, the altered expression patterns of the hub
genes were not validated by quantitative real-time PCR. Second,
as the AP1 signaling is at the core and regulates T cell phenotype,
the comparison of T cell phenotypes at different clinical stages,

and correlation analysis between AP1 signal and infiltration
abundance or markers of different T cell phenotypes would
further enhance the pattern in this study. Third, we had no
complete data of the immunological analyses, such as cytokines,
antibodies, and biochemical indices, for these patients and could
not perform an association analysis of these parameters with the
transcriptomic analysis, which would offer some more insights
into the dynamic pattern of immune responses during recovery of
COVID-19. A focused and well-designed experimental study with
rhesus monkey model of SARS-CoV-2 infection would help to
clarify these key issues in the future.29

In conclusion, we obtained longitudinal whole transcriptome
data from patients with different levels of disease severity and
allowed us to present a comprehensive view of the dynamics and
transcriptional regulation of peripheral blood immune cells during
recovery from COVID-19. The rapid attenuation of innate
immunity and humoral immunity at the transcription level were
important features, and the regulation of poly-functional memory
T cell responses was critical for the treatment. The inability to carry
out experimental verification is the main limitation, but the mutual
verification at the levels of mRNA, miRNA, and lncRNA improved
the credibility of the results. These results have direct implications
for modulating T cell immunity in the successful treatment of
COVID-19 and the development of more effective ways to prevent
SARS-CoV-2 infection.

MATERIALS AND METHODS
Patient cohort and sample collection
A total of 18 patients with COVID-19 were admitted at the Yunnan
Infectious Disease Hospital, Kunming, China, and were enrolled in
the study from January 17 to April 9, 2020. Peripheral venous
blood samples from patients were obtained at the three clinical
stages (treatment, convalescence and rehabilitation). PBMC
samples were isolated from the fresh peripheral blood by Ficoll-
Paque (GE Healthcare) density gradient centrifugation, and were
stored at −80 °C until the use for total RNA extraction. The
detailed clinical features of all patients and the detailed sampling
time are shown in Fig. 1 and Supplementary Table 1. All samples
are processed in a BSL-2 laboratory qualified for SARS-CoV-2
testing, and in accordance with the laboratory biosafety guide for
the novel coronavirus (2nd edition) issued by the National Health
Commission of China.

RNA extraction and library preparation
Total RNA was extracted by using the RNAeasy kit (TianGen,
Beijing, China) according to the manufacturer’s instructions. The
purity, concentration, and integrity of total RNA were checked
using the NanoPhotometer spectrophotometer (IMPLEN, CA, USA),
the Qubit RNA Assay Kit in Qubit 2.0 Fluorometer (Life
Technologies, CA, USA), and the RNA Nano 6000 Assay Kit of the
Bioanalyzer 2100 System (Agilent Technologies, CA, USA),
respectively. Besides, RNA degradation and contamination were
monitored on 1% agarose gels. A total amount of 1 μg total RNA
per sample was used to prepare for the rRNA-depleted cDNA
library. Ribosomal RNA was removed by Epicentre Ribo-zeroTM
rRNA Removal Kit (Epicentre, USA), and rRNA free residue was
cleaned up by ethanol precipitation. Subsequently, sequencing
libraries were generated using the rRNA-depleted RNA by
NEBNext UltraTM Directional RNA Library Prep Kit for Illumina
(NEB, USA) and sequenced on an Illumina HiSeq 4000 platform to
generate 150 bp paired-end reads. For a small RNA library, a total
amount of 2 μg total RNA per sample was used as the input
material. Sequencing libraries were generated using NEBNext
Multiplex Small RNA Library Prep Set for Illumina (NEB, USA)
following the manufacturer’s recommendations. Small RNA
libraries were sequenced on an Illumina Hiseq 2500 platform
and 50 bp single-end reads were generated. All the data have
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been deposited in the Gene Expression Omnibus database under
the accession number GSE157859.

RNA sequencing (RNA-seq) data processing
For mRNA and lncRNA, raw RNA-seq reads generated from rRNA-
depleted libraries were trimmed to remove sequencing adapters
and low-quality reads. Quality of data were checked by FastQC
v0.11.9. Adapters were removed by Trimmomatic v0.39.54 The clean
reads were then aligned to the primary assembly of
the human reference genome, GRCh38, using STAR v2.7.3a.55

StringTie v2.1.2 was used to assemble transcripts in a reference-
guided manner for each sample.56 The reference (GENCODE v33)
and assembled transcripts for all samples were merged by
StringTie.56 Novel transcripts were obtained by comparing the
merged transcripts with the reference transcripts by cuffcompare
(code==‘x’ | Code==‘u’ | code==‘i’).57 Novel lncRNAs were identi-
fied through the following filters: (1) transcript length >200 bp and
>=2 exons; (2) lack of coding potential predicted by both CPC258

and CPAT;59 (3) no overlap with known lncRNAs from the RefLnc60

or LNCipedia databases.61 Novel lncRNAs, known lncRNAs from
RefLnc and LNCipedia,61 and reference transcripts (GENCODE v33)
were merged and used for transcript quantification by kallisto
v0.46.1.62 For small RNA-seq analysis, known and novel miRNAs
were obtained and quantified by miRdeep263 using human and
chimpanzee miRNA from miRBase v22.164 as the references.

Differentially express RNA and target genes for non-coding RNA
DESeq265 was used to identify differentially expressed mRNAs
(DEGs), lncRNAs (DElncRNAs) or miRNAs (DEmiRNAs) between
patients at different clinical stages or with different clinical types
(Supplementary Data 1, 2). P-value of differential expression was
adjusted by the Benjamini–Hochberg’s (BH) method (FDR).
Because some samples with poor library quality were excluded,
DEGs and DElncRNAs were calculated based on 39 samples, while
DEmiRNAs was calculated based on all samples. The target genes
of lncRNAs was predicted by their nearest and co-expressed
(Pearson’s correlation P < 0.05) protein-coding genes. Target genes
of miRNA were obtained by merging the results from two publicly
available databases miRDB66 and miRWalk 2.0.67 Genes predicted
by both of the two databases and negatively co-expressed
(Pearson’s correlation P < 0.05 and r < 0) with the miRNA were
defined as target genes of the miRNA. The functional annotation
and analysis of DEmiRNA and DElncRNA in this study are for their
target genes, therefore non-coding RNAs without target genes
were excluded from functional analysis.

Gene set enrichment analysis (GSEA)
The values of log2 fold change relative to the treatment stage of
DEG and target genes for DEmiRNA and DElncRNA at the
convalescence stage and the rehabilitation stage are subjected
to linear regression analysis. Then through the GSEA algorithm of
DOSE,68 the slope values of log2 fold change of these genes are
used to calculate the significantly enriched biological process GO
gene sets (FDR < 0.05) and the corresponding enrichment scores.
These GSEA results were further classified and summarized by
REVIGO,69 and converted into two-dimensional lattice data based
on GO semantic space. Finally, clustering algorithms are used to
analyze the similarities and differences of the signal pathways
affected by different types of transcriptomes (mRNA, miRNA, and
lncRNA) or different clinical types of samples (Mild, moderate, and
severe).

Functional analyses
Since there are multiple comparisons of samples at three clinical
stages in our study, there can be as many as 8 differential
expression patterns of the differentially expressed transcriptome
during COVID-19 recovery. DEGs and target genes for DEmiRNAs
or DElncRNAs can be further divided into interferon-stimulated

genes (ISG), transcription factor genes and phosphorylation
regulatory genes according to their functions. These differentially
expressed RNAs with different expression patterns and functions
are respectively analyzed and visualized for GO enrichment by
clusterProfiler.70 In addition, clusterProfiler and pathview71 can
further construct KEGG enrichment network and functional
network of these genes, and visualize the relationship between
genes and between genes and signal pathways. All differentially
expressed RNAs are constructed to a protein–protein interaction
network (PPI) by STRING V11.72 According to the network analysis,
we select 65 highly differentially expressed (Log2 fold change >1)
genes with top connectivity and 19 related non-coding RNAs to
reconstruct a core PPI network.

Weighted correlation network analysis (WGCNA) network
construction
The mRNA, lncRNA, and miRNA signed WGCNA co-expression
network was constructed on the basis of the top 8000 most variably
expressed mRNAs/lncRNAs and top 600 most variably expressed
miRNAs in all patients with COVID-19. The correlation matrix was
obtained by calculating the Pearson’s correlations between all gene
pairs across all subjects in the dataset, and then were converted into
an adjacency matrix using a power function (power β= 14). For
module detection, the adjacency matrix was further transformed
into a topological overlap matrix (TOM), and hierarchical clustering
was used to group genes based on the dissimilarity matrix (1-TOM),
followed by a dynamic cut-tree algorithm to dynamically cut
clustering dendrogram branches into gene modules (Supplemen-
tary Fig. 8). A height cutoff of 0.1 was used to merge modules whose
expression profiles are highly similar (Supplementary Data 3).
Correlations between module eigengenes and traits of patients
with COVID-19 were computed by Pearson’s correlation.73,74

Network was visualized by using the Cytoscape 3.8 software.75

DATA AVAILABILITY
All the RNA sequencing data have been deposited in the Gene Expression Omnibus
database under the accession number GSE157859.
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