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Supplementary Materials and Methods 

Functional genomic strategy for fine-mapping of potentially functional variants 

and likely causal genes at 11p11.2 

A regulatory functional variant (fVar) was defined as a genomic variant capable of 

modulating gene expression by affecting the binding of certain transcription factor 

(TF) to the active regulatory element (ARE) in which the variant was located. 

Multi-omics data at bulk brain tissue or single-cell level from brain tissues, neural 

cells, and monocytes were included for the fine-mapping of fVars. Alzheimer’s 

disease (AD)-associated single nucleotide polymorphisms (SNPs) from three recent 

large-scale AD genome-wide association studies (GWASs), the Lambert study (1), the 

Kunkle study (2), and the Jansen study (3) were initially subjected to the functional 

genomic analysis. Bulk brain tissue and monocyte histone modifications data 

(Chromatin Immunoprecipitation Sequencing, ChIP-seq) associated with active 

promoters and enhancers (H3K4me3, H3K9ac, H3K4me1 and H3K27ac) (4, 5), and 

open chromatin data (Assay for Transposase-Accessible Chromatin using sequencing, 

ATAC-seq) (6, 7) were integrated to identify SNPs located within AREs. Single-cell 

ChIP-seq (8) and ATAC-seq (8-10) data for different neural cells (including neurons, 

astrocytes, microglia, and oligodendrocytes) were also used to identify SNPs that may 

have a function in certain types of neural cells, especially microglia. ChIP-seq data of 

623 TFs (4, 5) and the atSNP algorithm (11) were applied to further test whether 

SNPs within the AREs were able to affect the binding affinities of TFs to the AREs. 

Allelic effects of potential fVars were confirmed by allele imbalance analysis, 

dual-luciferase reporter assays, and base-editing. 

We defined target gene of an fVar on basis of two criteria. First, its expression is 

associated with that fVar (eGene). Second, that gene has direct chromatin interactions 
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with the ARE in which the fVar is located. We integrated expressional quantitative 

trait loci (eQTL) datasets of bulk brain tissue (12, 13), microglia (14), and monocytes 

(15, 16) with chromatin interaction data of neurons (8, 10), astrocytes (10), 

oligodendrocytes (8), microglia (8), and monocytes (4, 5), respectively. 

The convergent functional genomics (CFG) strategy (17, 18), which incorporated 

multiple lines of AD-related evidence, was used to assess a gene’s relevance to AD 

pathogenesis (17, 19, 20). Briefly, one point was assigned if the target gene: i) was 

predicted to be the causal gene by integrative analyses of AD GWAS and eQTL 

datasets (14, 21, 22); ii) was differentially expressed at the early stage or at the late 

stage of AD at the single-cell (23) or bulk brain level (17); iii) was differentially 

acetylated (H3K27ac) (24), or iv) had a differential protein level (25) in AD patients 

compared to controls. The sum of all lines of evidence (the integrative analysis, 

early-stage mRNA change, late-stage mRNA change, epigenetic change, and protein 

change) resulted in a total CFG score ranging from 0 (no association) to 5 (the 

strongest association). Genes with CFG > 3 were considered to be more likely to be 

involved in AD pathogenesis. The effects of prioritized genes on AD-related 

molecular phenotypes were further confirmed by cell assays. 

 

AD GWASs 

The three recent large-scale AD GWASs, i.e. the Lambert study (1), the Kunkle study 

(2), and the Jansen study (3) were included for fine-mapping the AD-associated SNPs 

at 11p11.2. The Lambert study included 17,008 AD patients and 37,154 controls 

(Nsnps = 7,055,881) (1). The Kunkle study (2) had an updated dataset of the Lambert 

study (1), with 17 newly added sample datasets, which resulted in 21,982 AD patients 

and 41,944 controls (Nsnps = 36,648,992) (2). The Jansen study (3) was based on 
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clinical diagnosed AD patients and individuals with one or two parents with AD 

(AD-by-proxy). The Phase 3 of the Jansen study (3) was a meta-analysis of stage 1 

data from the Lambert study (N = 54,162) (1), AD GWAS data of the Psychiatric 

Genomics Consortium (PGC, N = 17,477), whole-exome sequencing (WES) data of 

the Alzheimer’s Disease Sequencing Project (ADSP, N = 7,506), and GWAS data of 

AD-by-proxy subjects and controls from the UK Biobank (N = 376,113). A total of 

13,367,299 variants were genotyped or imputed in the Jansen study (3).  

For association analysis of AD endophenotypes including age-at-onset of AD and 

β-amyloid 42 (Aβ42) level in cerebrospinal fluid (CSF), we used two reported datasets 

(26, 27). Briefly, the GWAS of age-at-onset of AD included 14,406 AD patients and 

25,849 controls (Nsnps = 8,253,925) (26). The GWAS data of amyloid beta (Aβ42), 

tau, and phosphorylated tau (pTau-181) levels in CSF were conducted with 3146 

subjects, and had 7,358,575 variants for analyses (27). Considering the fact that the 

sample size for GWAS of AD endophenotypes including Aβ42 level in CSF (N=3146) 

was relatively small for achieving a robust statistical power, we arbitrarily used a 

loose threshold (P < 0.001) to define the association of 11p11.2 with AD 

endophenotypes. 

 

Assignment of AD-associated SNPs at 11p11.2 

Summary statistics from the Lambert study (stage 1 data) (1), the Kunkle study (2) 

(stage 1 data), and the Jansen study (3) were used to identify the AD-associated SNPs 

at 11p11.2. As the significant level is affected by sample size under study, some 

suggestively or marginally significant SNPs in a single GWAS report can achieve a 

genome-wide significance (P < 5 x 10-8) with increased sample size in further GWASs 

or meta-analyses. This has been testified by many large-scale meta-analyses of AD (2, 
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3) and other complex diseases (28-30). There is a high likelihood that these suggestive 

SNPs may also be biologically functional and relevant to AD, albeit with minor 

effects (31). Therefore, in order to maximize the coverage of subsequent functional 

mapping with an acceptable statistical credibility and to capture as many potentially 

risk SNPs as possible, we used a relatively moderate GWAS P cutoff (P < 1 x 10-5, 

which was also used by others (32, 33) to distill candidate AD risk SNPs at 11p11.2. 

The false discovery rate (FDR) corresponding to the chosen P < 1 x 10-5 threshold is 

1x10-5 x 4049 SNPs at 11p11.2 = 0.04. SNPs with a minor allele frequency (MAF) > 

0.01 and reached a suggestive genome-wide significance (P < 1x10-5) (32, 33), and 

SNPs that were in tight linkage (r2 > 0.8) with the above SNPs at 11p11.2 (chr11: 46.5 

megabases [Mb]-48 Mb, hg19) were extracted from the three GWASs (1-3). 

Genotype data from the 1000 Genomes project Phase 3 (503 European individuals 

[EUR]) (34) were used to compute the linkage disequilibrium (LD) among the 

variants at 11p11.2. The SNPs from all three studies (1-3) were combined, and a total 

of 452 AD-associated SNPs were obtained for 11p11.2 (Supplementary Table S2). 

The effects of SNPs across the three studies (1-3) were checked and SNPs with 

inconsistent effects were discarded. We conducted gene-based annotations of these 

452 SNPs by using ANNOVAR (35). The Combined Annotation Dependent 

Depletion (CADD) database (https://cadd.gs.washington.edu/) was used to evaluate 

the deleteriousness of missense variants (36). 

 

Detection of LD blocks (LBs) at 11p11.2 

LD-based clumping of GWAS summary statistics at 11p11.2 from the Lambert study 

(1) were conducted to detect LBs using Plink v1.9 (www.cog-genomics.org/plink/1.9/) 

(37). Genotyping data of 503 EUR individuals from the 1000 Genomes Project (phase 

http://www.cog-genomics.org/plink/1.9/
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3) (34) were used as the reference. The significance threshold for index SNPs was 

arbitrarily set as 1x10-5 (--clump-p1 1x10-5). The SNPs that were located within ±1 

Mb (--clump-kb 1000) from the index SNP and in tight linkage (--clump-r2 0.8) with 

the index SNP were identified.  

As defining LD blocks is quite challenging, we also used R package bigLD (38) 

to detect LD blocks at 11p11.2 using the 1000 Genomes EUR genotyping data (34) 

and compared with the LBs detected by using Plink v1.9 (37). The threshold for the 

correlation value |r| was set to 0.9 for bigLD (38), corresponding to r2 > 0.8 that was 

used in Plink v1.9 (37). 

 

QTL data of bulk brain tissues, microglia, and monocyte 

For bulk brain eQTL data, we used the eMeta dataset (12) and the PsychENCODE 

dataset (13). The eMeta dataset was a meta-analysis (12) of bulk brain eQTL data 

from the Genotype-Tissue Expression (GTEx) project (39, 40), the CommonMind 

Consortium (CMC) (41), and the Religious Orders Study and Memory and Aging 

Project (ROSMAP) (42), with an effective sample size of 1194. The PsychENCODE 

dataset had 1387 postmortem prefrontal cortex samples (13). Microglia eQTL dataset 

was taken from the Microglia Genomic Atlas (MiGA, n = 216), which contains 216 

primary human microglia samples isolated from medial frontal gyrus, superior 

temporal gyrus, subventricular zone, and thalamus of 90 subjects with neurological 

and psychiatric diseases, as well as unaffected subjects (14). We downloaded the 

results of meta-analysis (fixed effects) across different brain regions (14). The 

monocyte eQTL data were taken from Raj et al. (16) (N=461) and Kim-Hellmuth et al. 

(15) (N=134). Only cis-eQTL, i.e., SNPs within ±1 Mb from the gene transcriptional 

start site (TSS) or transcriptional end site (TES) were included. When referring to 
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significant eQTL genes for all SNPs at 11p11.2, we used a P threshold that was 

corrected by the total number of SNPs and genes within ±1Mb of 11p11.2 (P < 

0.05/35 genes/452 SNPs = 3.2x10-6). For eGene of a single SNP, we used an eQTL P 

threshold corrected by the total number of genes (P < 0.05/35 genes ≈ 1x10-3). 

 

Transcriptome-wide association study (TWAS) of eQTL and AD GWASs 

We performed TWAS to infer potentially causal genes at 11p11.2. Two algorithms, i.e. 

MetaXcan (21) and SMR (22), were used in this study. The SMR (22) and MetaXcan 

(21) analyses need the reference eQTL panels, which were constructed by genotype 

and expression data. It is ideal that the TWAS could be repeated with microglial or 

monocyte reference panels. However, the available datasets for monocytes and 

microglia contained no such information. Therefore, we performed the SMR and 

MetaXcan analyses with the reference eQTL panels of whole blood and bulk brain 

tissues, respectively. In brief, summary statistics from the three GWASs (the Lambert 

study (1), the Kunkle study (2), and the Jansen study (3)) at 11p11.2 were integrated 

with eQTL datasets of different brain regions from the GTEx project (39, 40) and of 

peripheral blood (43, 44). Thirteen GTEx brain regions and nervous tissues, including 

amygdala (N = 100), anterior cingulate cortex (BA24) (N = 121), caudate (N = 160), 

cerebellar hemisphere (N = 136), cerebellum (N = 173), cortex (N = 158), frontal 

cortex (BA9) (N = 129), hippocampus (N = 123), hypothalamus (N = 121), nucleus 

accumbens (N = 147), putamen (N = 124), spinal cord (cervical c-1) (N = 91), and 

substantia nigra (N = 88), were included for analyses.  

For MetaXcan analyses (21), pre-calculated databases for Depression Genes and 

Network’s (DGN) whole blood (N = 922) (43) and GTEx were downloaded from the 

PredictDB Data Repository (http://predictdb.org/) (45). For SMR analyses (22), we 

http://predictdb.org/


8 

downloaded peripheral blood (N = 2765) (44) and GTEx eQTL data from the SMR 

website (http://cnsgenomics.com/software/smr/#eQTLsummarydata) (22). The 

significant threshold values were set as Bonferroni-corrected P < 1x10-4 for the 

MetaXcan analyses (14 tested tissues and 35 genes within ±1 Mb of 11p11.2 captured 

in eQTL datasets), and as PSMR < 1x10-4 (Bonferroni-corrected) and PHEIDI > 0.05 for 

the SMR analyses, respectively. 

We compared our TWAS results with colocalization results reported by Lopes et 

al. (14) for cross validation. We obtained the results of colocalization analyses from 

Lopes et al. (14), which integrated eQTL data of bulk brain, monocyte, and microglia 

with AD GWASs (Ref. (14) and references therein). Genes with PP.H4 > 0.7 were 

considered to be colocalized. The detailed information regarding colocalization 

analyses can be found in the original publication (14). 

 

Histone modification data of brain tissues, neural cells, and monocytes 

ChIP-seq data for histone modifications related to active promoters (H3K4me3 and 

H3K9ac) (46), enhancers (H3K4me1 and H3K27ac) (47), and repressors (H3K27me3) 

(48) for eight brain regions (layer of hippocampus, temporal lobe, angular gyrus, 

caudate nucleus, cingulate gyrus, middle frontal area 46, substantia nigra, and 

embryonic brain) and six neural cells (astrocyte, bipolar neuron, neural cell, neural 

stem progenitor cell, neuron, and radial glial cell) were downloaded from the 

Encyclopedia of DNA Elements (ENCODE) (https://www.encodeproject.org) 

(Supplementary Table S1) (4, 5). Histone modification data for monocytes were also 

included for analysis in consideration of its critical role in AD (26). H3K4me3 and 

H3K27ac ChIP-seq peak files for neurons (NEUN+), astrocytes (NEUNneg LHX2+), 

microglia (PU.1+), and oligodendrocytes (OLIG2+) isolated from resected cortical 

http://cnsgenomics.com/software/smr/#eQTLsummarydata
https://www.encodeproject.org/
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brain tissues (N = 6) (8) were obtained from the UCSC 

(https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19). Peak files in 

bed format were obtained, and a FDR < 0.001 was applied to obtain relatively reliable 

peaks (49). 

 

ATAC-seq data of bulk brain tissues, neural cells, and monocytes 

ATAC-seq peaks of induced pluripotent stem cell (iPSC)-induced excitatory neurons, 

iPSC-derived hippocampal dentate gyrus (DG)-like neurons, and primary fetal 

astrocytes were downloaded from Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/), with accession number GSE113483 (10). The 

ATAC peaks of neuron and glia cells from 14 brain regions were downloaded from 

the Brain Open Chromatin Atlas (BOCA, http://icahn.mssm.edu/boca) (6). The 

ATAC-seq of monocytes was downloaded from the GEO database with accession 

number GSE87218 (7). ATAC-seq peak files for neurons (NEUN+), astrocytes 

(NEUNneg LHX2+), microglia (PU.1+), and oligodendrocytes (OLIG2+) isolated 

from resected cortical brain tissues (N = 6) (8) were obtained from the UCSC browser 

(https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19). Single-cell 

ATAC-seq (scATAC-seq) data of isocortex (N = 3), striatum (N = 3), hippocampus (N 

= 2), and substantia nigra (N = 2), were downloaded from the GEO with accession 

number GSE147672 (9). A FDR < 0.001 was applied to filter ATAC peaks. 

 

ChIP-seq of transcription factors (TFs) and differential TF binding analyses 

To identify variants located in TF binding sites (TFBS), a total of 1,322 ChIP-seq 

datasets for 623 TFs were downloaded from the ENCODE database (Supplementary 

Table S1) (4, 5). Among these ChIP-seq datasets, only 37 datasets for 23 TFs were 

https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19
https://www.ncbi.nlm.nih.gov/geo/
https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19
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collected from AD-related tissues or cells. These AD-related datasets had an 

insufficient coverage for the entire TFs. To remedy this limitation, we used the GTEx 

database (39, 40) to evaluate the expression levels of TFs in brain tissues. As we 

found that about 91% of TFs (565 out of 623 TFs with transcripts per million (TPM) > 

1) are expressed in brain tissues (Supplementary Figure S11), we used ChIP-seq 

data of all TFs from all available tissues and cells for the subsequent TF binding 

analysis in order to achieve a higher coverage. 

DNA sequences of the top 1000 peaks (ranked by peak height in bed files) for 

each TF were subjected to the motif-based sequence analysis tool MEME 

(https://meme-suite.org/meme/) (50) to predict the DNA binding motifs (position 

weight matrix, PWM) (-mod zoops -nmotifs 3 -minw 6 -maxw 30). Top 3 PWMs with 

the smallest E-values for each TF were subjected to R package atSNP (11) to predict 

whether different alleles of certain variant within the TFBS could affect binding 

affinities of this TF. A variant was considered to disrupt the TF binding affinity if 

DNA sequence with reference allele (P_ref < 0.05) or alternative allele (P_alt < 0.05) 

of this variant was able to bind to the target TF, and their binding affinities were 

significantly different (P_rank < 0.05) (11). 

 

Functional genomic fine-mapping of potential fVars 

To decide whether the target SNP was located in any potential regulatory elements 

(promoter or enhancer), open chromatin, or TFBS, peaks of histone modification, TFs, 

and ATAC-seq were intersected with 452 AD-associated SNPs, respectively, using 

bedtools (51). A SNP was considered to locate in ARE if it was overlapped with the 

histone modification peaks and the open chromatin peaks (ATAC-seq) at the same 

time. If an ARE SNP was also located in the binding peak of a TF, and was also able 

https://meme-suite.org/meme/
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to affect the binding affinity of this TF to the peak, which was predicted by the atSNP 

algorithm (11), the SNP was regarded as a potentially fVar. 

 

Allele specific expression (ASE) analyses 

ASE measures allelic imbalance during transcription, which reflects the expression 

regulation activity of certain variant (39). We used ASE data for 53 tissues from the 

GTEx (phs000424.v7.p2) (39, 40, 52) to verify the cis-regulatory effects of candidate 

fVars. Only SNPs that were heterozygous in GTEx individuals and were captured by 

RNA sequencing (RNA-seq) were suitable for the ASE analyses. Among the 24 fVars 

identified in the above analyses, only 12 variants met this criterion for the ASE 

analyses. As it was unable to draw meaningful conclusions for variants with relatively 

low capture rates, we only included variants that were detected in > 10 samples in the 

ASE analysis. Binomial tests were used to test if the ratio of the two alleles of target 

variant was significantly different from the expectation (52). ASE analyses were 

performed by using a pooled data of all GTEx tissues, brain tissues only, and whole 

blood (39, 40, 52), respectively. 

 

Cell lines and cell culture 

HEK293T cells, U251 cells, human microglia HMC3 cells, and HM cells were 

obtained from Kunming Cell Bank, Kunming Institute of Zoology. HEK293T cells 

and HM cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; 

Gibco-BRL, 11965-092). U251 cells were cultured in Roswell RPMI-1640 medium 

(Gibco-BRL, C11875500BT). HMC3 cells were cultured in MEM medium (Procell, 

PM150410). All culture media were supplemented with 10% fetal bovine serum (FBS, 
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Gibco-BRL, 10099-141), 100 U/mL penicillin and 100 mg/mL streptomycin. Cells 

were cultured at 37 °C in a humidified atmosphere incubator with 5% CO2. 

 

Vector construction and dual-luciferase reporter assays 

The DNA fragments containing the target SNPs were amplified from in-house human 

DNA samples (20, 53) (Supplementary Table S11). A DNA fragment containing 

rs1542321, rs11039200, and rs10734557 was commercially synthesized (Tsingke 

Biotechnology Co. Ltd., Nanjing, China). The DNA fragments were inserted into the 

pGL3-basic (Promega, for promoter assays) or pGL3-promoter (Promega, for 

enhancer assays) luciferase reporter vector. PCR-mediated point mutagenesis was 

used to generate DNA vectors containing the respective alleles of each target SNP 

(Supplementary Table S11). All inserted DNA fragments were verified by Sanger 

sequencing. 

We validated the allelic regulatory effects by using dual-luciferase reporter assays, 

which were performed in the above four cell lines. We used HEK293T cells and U251 

cells to test all 11 fVars (including 7 fVars with significant ASE and 4 fVars without 

ASE data). We chose these two cell lines based on two reasons. First, most genes at 

11p11.2 were ubiquitously expressed in different cells (Supplementary Figure S7). 

Second, most of active regulatory elements (AREs) containing fVars were also active 

in HEK293T and U251 cell lines (Supplementary Figure S12). For the three fVars 

(rs10734557, rs1542321 and rs11039200) in the enhancer of SPI1, which was 

primarily expressed in microglia and monocytes (26, 54, 55), we repeated luciferase 

reporter assays by using human microglia cell lines HMC3 and HM. 

HEK293T cells were grown in 48-well plates with six replicates for each vector. 

U251 cells were grown in 24-well plates with four replicates per vector. HMC3 and 
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HM cells were grown in 24-well plates with six replicates per vector. The pGL3 

vector (250 ng per well for the 48-well plate, and 500 ng per well for the 24-well plate) 

and the internal control vector phRL-TK (25 ng per well for the 48-well plate, and 50 

ng per well for the 24-well plate) were co-transfected into the cells. The X-tremeGene 

HP DNA transfection reagent (ROCHE, 6366236001) was used for transfection. 

HEK293T cells were harvested at 24 h post transfection, U251, HMC3, and HM cells 

were harvested at 48 h using passive lysis buffer (Promega). Luminoskan Ascent 

instrument (Thermo Fisher Scientific Inc.) was used to measure the firefly and Renilla 

luciferase activities with the Dual-Luciferase Reporter Assay System (Promega, 

E1910) following the manufacture’s instruction. 

 

Assign candidate target genes to potential fVars with chromatin interaction and 

eQTL data 

Promoter capture HiC (pc-HiC) data of iPSC-derived hippocampal DG-like neurons, 

iPSC-induced cortical excitatory neurons, and human primary fetal astrocytes were 

downloaded from the GEO database with accession number GSE113481 (10). 

Proximity ligation-assisted ChIP-seq (PLAC-seq) data of microglia, neurons and 

oligodendrocytes were obtained from the UCSC 

(https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19) (8). HiC data of 

CD14-positive monocyte were downloaded from the ENCODE (accession IDs: 

ENCSR236EYO and ENCSR444SKT) (4, 5). Consensus regulatory elements at 

11p11.2 were obtained by merging promoter and enhancer peaks from all histone 

modification datasets included in this study (Supplementary Table S1) (4, 5) with 

the mergePeaks function (http://homer.ucsd.edu/homer/ngs/mergePeaks.html, -d 

given). A gene was considered to interact with the potentially fVar if its promoter or 

https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19
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enhancer significantly interacted (interaction score > 3, corresponding to P < 0.001 

(10)) with the regulatory element containing the fVar. Bulk-brain eQTL were 

integrated with HiC data from all types of neural cells (neurons, astrocytes, microglia, 

and oligodendrocytes) to assign candidate target genes for potentially fVars. Microglia 

eQTL and microglia PLAC-seq, monocyte eQTL and monocyte HiC were integrated, 

respectively, to assign microglia-specific and monocyte-specific target genes for fVars. 

In order to obtain relatively reliable target genes for fVars, only a gene that physically 

interacted (chromatin interaction) and were expressionally associated (eGene) with 

the fVar at the same time was regarded as the target gene for the fVar. Because two 

different levels of data were applied to ensure the reliability, we thus used less 

stringent cutoffs for eGenes and chromatin interactions. We used an eQTL P<0.001 to 

define an eGene and a HiC score>3 (corresponded to P < 1x10-3) to define a 

significant chromatin interaction. In addition, more stringent cutoffs for eGenes (P < 

3.2x10-6) and chromatin interactions (HiC score > 5, corresponding to P < 1x10-5 (10)) 

were also applied. If an fVar was located in a gene, which was also labeled as the 

eGene of this particular fVar, we defined this gene as the target gene of this fVar. 

 

Cell-type expression specificity analyses 

Cell-type expression specificity of certain gene was tested using the scRNA-seq data 

from prefrontal cortex samples of AD patients (N = 24, including patients at the 

early-stage and the late-stage pathology) and controls (N = 24) (23). Cell-type 

specificity (i.e. proportion of total expression of a gene in one cell type compared to 

all other cell types) metric was calculated for certain gene using the 

generate.celltype.data function from the expression-weighted cell-type enrichment 

(EWCE) R package (56). 
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Base-editing of target variants 

Base-editing was used to generate precise point mutations in cellular DNA for the 

target variants. Guide RNAs (gRNAs) targeting to the genomic regions of the variants 

were designed (Supplementary Table S11), and were sub-cloned into the 

pGL3-U6-sgRNA-PGK-puromycin (57) (Addgene plasmid # 51133) plasmid. 

Constructs containing different gRNAs (500 ng per well for the 6-well plate) were 

co-transfected with pCMV-ABE7.10 (58) (2 μg per well for the 6-well plate, Addgene 

plasmid # 102919) into HEK293T cells by using LipofectamineTM 3000 (Thermo 

Fisher Scientific Inc.). Culture medium was changed daily with fresh medium 

supplemented with 2 μg/mL puromycin after transfection for 24 h, and cells were 

selected by puromycin for 5 days. Single cells resistant to puromycin were seeded in 

the 96-well plate and were cultured for 2-3 weeks to obtain single cell clones. For 

each clone, the target region was amplified and sequenced to confirm successful 

editing of the target variants. 

 

ATAC-seq library preparation and data analyses 

ATAC-seq libraries were prepared using the TruePrep® DNA Library Prep Kit 

(Vazyme, TD501) following the manufacturer’s instruction. Briefly, 1×105 HEK293T 

cells pellet was re-suspended in 50 μL of cold lysis buffer (Sigma-Aldrich, NUC101) 

to generate nuclei, followed by centrifuging at 500 ×g for 10 min at 4 oC to remove 

the supernatant. The nuclei pellet was immediately continued to transposition reaction 

with Tn5 transposome at 37 oC for 30 min and was purified using the KAPA Pure 

Beads (KAPA Biosystems, ks8002). The transposed DNA fragments were amplified 

following by 72 °C for 3 min, 98 °C for 30 sec, and 9 cycles (each cycle: 98 °C for 15 

sec, 60 °C for 30 sec and 72 °C for 30 sec), followed by a final incubation at 72 °C for 



16 

5 min. The amplified PCR products were purified using the KAPA Pure Beads to get 

the ATAC-Seq libraries. Library qualities were assessed by gel electrophoresis and 

Agilent 2100 Bioanalyzer. 

The ATAC-seq libraries were sequenced on the Novaseq 6000 platform, and 150 

bp paired-ends reads were generated. The ENCODE ATAC-seq pipeline 

(https://github.com/ENCODE-DCC/atac-seq-pipeline) (4, 5) with default settings was 

used for the quality control and processing of ATAC-seq data. Briefly, adaptors and 

low-quality reads were trimmed and the remaining reads were mapped to human 

reference genome (GRCh38). PCR duplicates and reads mapping to mitochondrial 

DNA were filtered. Narrow peaks were called and peaks within blacklist regions 

(https://storage.googleapis.com/encode-pipeline-genome-data/hg38/hg38.blacklist.bed

.gz) were discarded. Peaks called from different samples were merged by the 

mergePeaks function from the HOMER tool set 

(http://homer.ucsd.edu/homer/ngs/mergePeaks.html). The maximum distance between 

peak centers to merge was set as 1000 bp. Consensus peaks were obtained by 

extracting peaks detected in at least 3 samples. Read counts for all consensus peaks 

were quantified by featureCounts (59) and were normalized by counts per million 

(CPM) by the calculateCPM function in R package scater (60), with adjustment of 

library size for each sample. For visualization, coverage of peaks was normalized 

using CPM in the bamCoverage function (binsize = 10) in deeptools (61). 

 

Real-time quantitative PCR (RT-qPCR) 

Total RNA was extracted by using the RNAeasy kit (TIANGEN Biotech Co. Ltd., 

Beijing, China) according to the manufacturer’s instructions. The quality of total RNA 

was measured on a NanoDrop biophotometer (Thermo Fisher Scientific Inc.). Total 
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RNA (1 μg) was used to synthesize cDNA by using oligo-dT18 primer and Moloney 

murine leukemia virus reverse transcriptase (M1701, Promega). The RT-qPCR was 

performed using iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories, 

172-5125) and the gene-specific primer pairs (Supplementary Table S11) on a CFX 

Connect Real-Time PCR Detection System (Bio-Rad Laboratories). The ACTB 

transcript was used for normalizing the expression of each target gene. 

 

Brain transcriptomic, epigenomic, and proteomic data of AD patients and 

controls 

Bulk brain tissue mRNA expression data of AD patients and controls were obtained 

from our previous study (AlzData: www.alzdata.org) ((17) and references therein). In 

brief, renormalized expression data for four brain regions were included, including the 

entorhinal cortex (EC, NAD = 39, Ncontrol = 39), hippocampus (HP, NAD = 74, 

Ncontrol = 65), frontal cortex (FC, NAD = 104, Ncontrol = 128), and temporal cortex 

(TC, NAD = 52, Ncontrol = 39). A gene with Benjamini-Hochberg’s (BH) adjusted P 

(FDR) < 0.05 was considered as the differential expressed gene (DEG) in AD patients 

compared to controls. Single cell RNA sequencing (scRNA-seq) data from prefrontal 

cortex of AD patients and controls were taken from Mathys et al. (23). Briefly, a total 

of 15 AD patients with early-stage pathology, 9 AD patients with late-stage pathology, 

and 24 controls were included in this study. Genes with a FDR < 0.05 in both the 

two-sided Wilcoxon rank-sum test and the Poisson mixed-model test were defined as 

DEGs at the single-cell level (23). Raw H3K27ac count data in postmortem EC 

samples from 24 AD patients and 23 controls were downloaded from the GEO 

database with accession number GSE102538 (24). Counts were normalized by CPM 

using the calculateCPM function in R package scater (60). The H3K27ac levels for 

http://www.alzdata.org/
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each regulatory element in AD and controls were compared by using the Student’s t 

test. Peak files for visualization were downloaded from 

https://epigenetics.essex.ac.uk/AD_H3K27ac/ (24). The protein abundance data for 

dorsolateral prefrontal cortex from 91 controls and 230 AD patients were obtained 

from the original proteomic study (25). The differences of H3K27ac levels and 

protein abundance between AD patients and controls were compared using the 

Student’s t test. 

 

Knockdown or overexpression of likely causal genes 

U251 cells with a stable expression of mutant APP constructed in our previous studies 

(U251-APP cells) (62, 63), were used to test the effect of expressional change of 

target gene on Aβ42 and pTau (pTau396) levels. For knockdown assay, siRNA of each 

gene (20 nM per well for the 6-well plate) was transfected into cells by using 

LipofectamineTM 3000 (Thermo Fisher Scientific Inc.). For overexpression assay, 

expression vector of target gene (2 μg per well for the 6-well plate) was transfected by 

using the X-tremeGene HP DNA transfection reagent (ROCHE, 6366236001). After 

transfection for 24 h, culture supernatant in each well was replaced with equal volume 

of fresh growth medium, and 1 μg/mL doxycycline (Sigma, D9891) was added to 

induce APP expression. Cells and culture supernatant were harvested at 72 h after 

transfection. 

 

Western blot and enzyme-linked immunosorbent assay (ELISA) 

Cells were lysed by protein lysis buffer (Beyotime, P0013) on ice and were 

centrifuged at 12 000 ×g at 4 °C for 10 min to remove cell debris. Protein 

concentration was determined using a BCA Protein Assay Kit (Beyotime, P0012). A 
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total of 20 μg protein was separated by 12% (vol/vol) sodium dodecyl sulphate 

(SDS)-polyacrylamide gel and electrophoretically transferred to a polyvinylidene 

difluoride membrane (Bio-Rad Laboratories, L1620177). The membranes were 

soaked with 5% (w/v) skim milk for 2 h at room temperature, and were incubated 

with the primary antibodies against MADD (1:1000; abcam, ab134117), MTCH2 

(1:1000; absin, abs143485), PSMC3 (1:1000; abcam, ab171969), Flag (1:5000; 

Abmart, M20008), and Tubulin (1:20000; EnoGene, E1C601) overnight at 4 °C, 

respectively. After three washes with Tris-buffered saline with 0.1% Tween (TBST, 5 

min each), the membranes were incubated with the respective anti-mouse or 

anti-rabbit secondary antibody (1:10000, KPL, USA) for 1 h at room temperature. 

The membranes were visualized using enhanced chemiluminescence reagents 

(Millipore, WBKLS0500). 

The levels of Aβ40 (Elabscience, E-EL-H0542c) and Aβ42 (Elabscience, 

E-EL-H0543c) in culture supernatant, and phosphorylated tau (pTau-396, Elabscience, 

E-EL-H5314c) in cell lysate of U251-APP cells with different transfections were 

measured by using commercial ELISA kits. A total of 100 μL culture supernatant or 

cell lysate were used to perform the ELISA assays according to the manufacturer’s 

instructions, respectively. The protein level of Aβ42 and pTau-396 were further 

normalized by the total amount of protein of each sample. However, Aβ1-40 was 

undetectable in U251-APP cell line and was excluded in the subsequent analysis. 

 

Stepwise conditional analysis for 11p11.2 

A stepwise model selection procedure was performed by using GCTA-COJO (64, 65) 

to independently select AD-associated SNPs (--cojo-slct) at 11p11.2. Briefly, GWAS 

summary statistics from the Lambert study (1), the Kunkle study (2), and the Jansen 
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study (3) were used in the analysis. Genotype data from 4410 individuals from the 

Alzheimer’s Disease Genetics Consortium (ADGC, NG00032) (66) were used as a 

population reference. Because only SNPs with a genome-wide (P < 5x10-8) or 

suggestive genome-wide significance (P < 1x10-5) were used in this analysis, we set a 

loose P threshold for parameter (--cojo-p) for GWASs as 1x10-5. 

 

RNA-seq data of PU.1 knockout B cells 

The RNA-seq data of B cells from PU.1 (SPI1) knockout (KO) mice (n = 2) and 

wide-type controls (n = 2) were downloaded from the GEO with accession number 

GSE90094 (67). Fragments per kilobase of transcript per million mapped reads 

(FPKM) normalized expression for target genes were obtained, and expressional 

difference between PU.1 KO and control groups were analyzed by two-tailed 

Student’s t test. 

 

Statistical analysis and data visualization 

The Locuszoom (http://locuszoom.org/) (68) was used to visualize GWAS results. 

Functional annotations for target genomic regions were visualized using the WashU 

epigenome browser (http://epigenomegateway.wustl.edu/) (69) or the Integrative 

Genomics Viewer (IGV) (70). Network was visualized by using the Cytoscape v3.7.1 

(71). The comparisons of relative luciferase activities, mRNA levels, chromatin 

accessibility levels, or protein levels between two different groups were performed by 

using the PRISM software (GraphPad Software, Inc., La Jolla, CA, USA) with the 

Student’s t test. A P < 0.05 was considered to be statistically significant. We 

performed Bonferroni correction for multiple testing for P values whenever this 

correction should be applied. 
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Data availability 

Publically available data used in this study were listed in Supplementary Table S1. 

The ATAC-seq data generated in this study were available at GSA 

(https://ngdc.cncb.ac.cn/gsa/) under accession number HRA004084. Related results 

and codes were available at the Alzdata webserver 

(http://www.alzdata.org/file/11p11.2_related_data_and_scripts.rar).  



22 

Supplementary Figures 

 

 

 
Figure S1. Linkage disequilibrium (LD) blocks at 11p11.2 detected by the bigLD. 
LD detection was performed by the bigLD (38) based on genotype data of 503 
European individuals from the 1000 Genomes project (phase 3) (34). Each LD block 
(from B-1 to B-9) was represented by a different color. 
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Figure S2. AD-associated SNPs at 11p11.2 were associated with expression of 
multiple genes in prefrontal cortex. The eQTL data were taken from the 
psychENCODE dataset (13). eQTLs with P < 3.2x10-6 (Bonferroni-corrected) were 
shown. 
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Figure S3. AD-associated SNPs at 11p11.2 were associated with expression of 
multiple genes in monocytes. The Raj study, monocyte eQTL dataset from Raj et al. 
(16); The Kim-Hellmuth study, monocyte eQTL dataset from Kim-Hellmuth et al. 
(15); eQTLs with P < 3.2x10-6 (Bonferroni-corrected) were shown. 
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Figure S4. Potentially functional variants with a low capture rate by the GTEx 
ASE data (39, 40, 52). Allele counts for the reference (Ref) allele and the alternative 
(Alt) allele were plotted for each fVar. Each dot represented an individual sample, and 
was colored by tissue. As the capture rates of these variants were inadequate (i.e., 
were detected in very few samples) to draw meaningful conclusions, ASE P-values 
were not calculated for these variants. 
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Figure S5. ASE of potentially functional variants in GTEx brain tissues and 
blood (39, 40, 52). Allele counts for the reference (Ref) allele and the alternative (Alt) 
allele were plotted for each fVar. Each dot represented an individual sample, and was 
colored by tissue. P values were measured by binomial tests. P values < 0.005 after 
Bonferroni correction for the total number of comparisons (0.05/10) were marked 
with red asterisks (*). 
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Figure S6. Three SPI1 potential fVars showed individual and addictive effects in 
human microglia cell lines. (A) Linkage disequilibrium (LD) of three fVars in SPI1 
and their haplotypes. Result was performed by Haploview 4.1 (72) based on genotype 
data of 503 European individuals (EUR) from the 1000 Genomes project Phase 3 (34). 
r2 was used for the LD color scheme. Haplotypes with frequencies > 0.1 in EUR were 
shown. (B-C) Dual-luciferase reporter assays for the three SPI1 potential fVars and 
their common haplotypes in EUR using human microglia cell lines HMC3 (B) and 
HM (C) cells. Two common haplotypes of the three SPI1 fVars in EUR were marked 
in blue. Shown results were representative of three independent experiments with 
similar results. Bars represent mean ± SD (n = 6 biological replicates for HMC3 cells 
and HM cells, respectively). P values were calculated by two-sided Student’s t test, 
together with the t-statistics (the degrees of freedom (df) = 10). P values < 0.003 after 
Bonferroni correction for the total number of comparisons (0.05/16) were marked 
with red asterisks (*). 
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Figure S7. Cell-type expression specificity of eGenes of potentially functional 
variants at 11p11.2. Cell-type specificity for each gene was calculated using R 
package EWCE (56), based on single cell RNA-seq data from Mathys et al. (23) 
(frontal cortex, n = 48). Ast: astrocytes; End: endothelial cells; Ex: excitatory neurons; 
In: inhibitory neurons; Mic: microglia; Oli: oligodendrocytes; OPC: oligodendrocytes 
precursor cells; Per: pericytes. 
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Figure S8. Sanger sequencing validated a successful base-editing of rs2293577 (A) 
and rs2280231 (B) in HEK293T cells. The original HEK293T cell line has a 
genotype TT for rs2293577 (HEK293T-TT) and TC for rs2280231 (HEK293T-TC). 
We obtained HEK293T cell clones with genotypes TT (TT-clone) and TC (TC-clone) 
for rs2293577, and with genotypes TC (TC-clone 1 and TC-clone 2) and CC 
(CC-clone) for rs2280231, respectively. 
  

A

B
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Figure S9. GWAS association signals before and after the conditional analysis at 
11p11.2. Each panel showed the original GWAS association P values (green dots) and 
P values conditioned (orange dots) on the SNP selected by GCTA-COJO (64, 65) for 
each GWAS (the Lambert study (1), the Kunkle study (2), and the Jansen study (3)). 
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Figure S10. Expressional changes of eGenes at 11p11.2 in B cells isolated from 
PU.1 (SPI1) knockout mice (67). The P value was calculated by the Student's t test 
(two-tailed) to evaluate expressional difference of each gene between control and 
PU.1 KO cells. FPKM, fragments per kilobase of transcript per million mapped reads. 
LPS, lipopolysaccharide; Control, wide-type mice; PU.1 KO, PU.1 knockout mice; 
Bars represent mean ± SD. *, P < 0.05; **, P < 0.01.  
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Figure S11. Mean expression of TFs in GTEx brain tissues. Original RNA-seq data 
of bulk brain tissues were obtained from the GTEx (39, 40), and were normalized by 
transcription per million (TPM). 
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Figure S12. Open chromatin peaks in HEK293T and U251 cells at 11p11.2. 
Potentially functional variants (fVars) tested by the dual-luciferase reporter assays 
were marked in red. 
  



34 

Supplementary References 

1. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. (2013): 
Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. 
Nat Genet 45:1452-1458. 

2. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. (2019): Genetic 
meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Abeta, tau, 
immunity and lipid processing. Nat Genet 51:414-430. 

3. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. (2019): 
Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's 
disease risk. Nat Genet 51:404-413. 

4. Encode Project Consortium (2012): An integrated encyclopedia of DNA elements in the human 
genome. Nature 489:57-74. 

5. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. (2018): The Encyclopedia 
of DNA elements (ENCODE): data portal update. Nucleic Acids Res 46:D794-D801. 

6. Fullard JF, Hauberg ME, Bendl J, Egervari G, Cirnaru MD, Reach SM, et al. (2018): An atlas of 
chromatin accessibility in the adult human brain. Genome Res 28:1243-1252. 

7. Novakovic B, Habibi E, Wang SY, Arts RJW, Davar R, Megchelenbrink W, et al. (2016): 
beta-glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 
167:1354-1368 e1314. 

8. Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, Hu R, et al. (2019): Brain cell 
type-specific enhancer-promoter interactome maps and disease-risk association. Science 
366:1134-1139. 

9. Corces MR, Shcherbina A, Kundu S, Gloudemans MJ, Fresard L, Granja JM, et al. (2020): 
Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for 
Alzheimer's and Parkinson's diseases. Nat Genet 52:1158-1168. 

10. Song M, Yang X, Ren X, Maliskova L, Li B, Jones IR, et al. (2019): Mapping cis-regulatory 
chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat 
Genet 51:1252-1262. 

11. Zuo C, Shin S, Keles S (2015): atSNP: transcription factor binding affinity testing for regulatory 
SNP detection. Bioinformatics 31:3353-3355. 

12. Qi T, Wu Y, Zeng J, Zhang F, Xue A, Jiang L, et al. (2018): Identifying gene targets for brain-related 
traits using transcriptomic and methylomic data from blood. Nat Commun 9:2282. 

13. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. (2018): Comprehensive functional 
genomic resource and integrative model for the human brain. Science 362:eaat8464. 

14. Lopes KP, Snijders GJL, Humphrey J, Allan A, Sneeboer MAM, Navarro E, et al. (2022): Genetic 
analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. 
Nat Genet 54:4-17. 

15. Kim-Hellmuth S, Bechheim M, Putz B, Mohammadi P, Nedelec Y, Giangreco N, et al. (2017): 
Genetic regulatory effects modified by immune activation contribute to autoimmune disease 
associations. Nat Commun 8:266. 

16. Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN, Replogle JM, et al. (2014): Polarization of the 
effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344:519-523. 

17. Xu M, Zhang DF, Luo R, Wu Y, Zhou H, Kong LL, et al. (2018): A systematic integrated analysis of 
brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream 
regulators in Alzheimer's disease. Alzheimers Dement 14:215-229. 

18. Niculescu AB, Le-Niculescu H (2010): Convergent Functional Genomics: what we have learned 
and can learn about genes, pathways, and mechanisms. Neuropsychopharmacology 35:355-356. 

19. Wu Y, Yao YG, Luo XJ (2017): SZDB: a database for schizophrenia genetic research. Schizophr 
Bull 43:459-471. 

20. Bi R, Zhang W, Zhang DF, Xu M, Fan Y, Hu QX, et al. (2018): Genetic association of the 
cytochrome c oxidase-related genes with Alzheimer's disease in Han Chinese. 
Neuropsychopharmacology 43:2264-2276. 

21. Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, et al. (2018): Exploring 
the phenotypic consequences of tissue specific gene expression variation inferred from GWAS 
summary statistics. Nat Commun 9:1825. 

22. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. (2016): Integration of summary 
data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48:481-487. 

23. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, et al. (2019): Single-cell 



35 

transcriptomic analysis of Alzheimer's disease. Nature 570:332-337. 
24. Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E, et al. (2018): A histone 

acetylome-wide association study of Alzheimer's disease identifies disease-associated H3K27ac 
differences in the entorhinal cortex. Nat Neurosci 21:1618-1627. 

25. Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, et al. (2020): Large-scale 
proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in 
energy metabolism associated with microglia and astrocyte activation. Nat Med 26:769-780. 

26. Huang KL, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. (2017): A common 
haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat 
Neurosci 20:1052-1061. 

27. Deming Y, Li Z, Kapoor M, Harari O, Del-Aguila JL, Black K, et al. (2017): Genome-wide 
association study identifies four novel loci associated with Alzheimer's endophenotypes and disease 
modifiers. Acta Neuropathol 133:839-856. 

28. Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen CY, Choi KW, et al. (2019): 
International meta-analysis of PTSD genome-wide association studies identifies sex- and 
ancestry-specific genetic risk loci. Nat Commun 10:4558. 

29. Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. (2018): 
Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under 
strong background selection. Nat Genet 50:381-389. 

30. Liu J, Li S, Li X, Li W, Yang Y, Guo S, et al. (2021): Genome-wide association study followed by 
trans-ancestry meta-analysis identify 17 new risk loci for schizophrenia. BMC Med 19:177. 

31. Hammond RK, Pahl MC, Su C, Cousminer DL, Leonard ME, Lu S, et al. (2021): Biological 
constraints on GWAS SNPs at suggestive significance thresholds reveal additional BMI loci. Elife 
10. 

32. Wang X, Tucker NR, Rizki G, Mills R, Krijger PH, de Wit E, et al. (2016): Discovery and validation 
of sub-threshold genome-wide association study loci using epigenomic signatures. Elife 5:e10557. 

33. Andrews SJ, Fulton-Howard B, Goate A (2020): Interpretation of risk loci from genome-wide 
association studies of Alzheimer's disease. Lancet Neurol 19:326-335. 

34. The 1000 Genomes Project Consortium (2015): A global reference for human genetic variation. 
Nature 526:68-74. 

35. Wang K, Li M, Hakonarson H (2010): ANNOVAR: functional annotation of genetic variants from 
high-throughput sequencing data. Nucleic Acids Res 38:e164. 

36. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M (2019): CADD: predicting the 
deleteriousness of variants throughout the human genome. Nucleic Acids Res 47:D886-D894. 

37. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015): Second-generation 
PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. 

38. Kim SA, Brossard M, Roshandel D, Paterson AD, Bull SB, Yoo YJ (2019): gpart: human genome 
partitioning and visualization of high-density SNP data by identifying haplotype blocks. 
Bioinformatics 35:4419-4421. 

39. GTEx Consortium (2017): Genetic effects on gene expression across human tissues. Nature 
550:204-213. 

40. GTEx Consortium (2013): The Genotype-Tissue Expression (GTEx) project. Nat Genet 
45:580-585. 

41. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. (2016): Gene 
expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 
19:1442-1453. 

42. Ng B, White CC, Klein HU, Sieberts SK, McCabe C, Patrick E, et al. (2017): An xQTL map 
integrates the genetic architecture of the human brain's transcriptome and epigenome. Nat Neurosci 
20:1418-1426. 

43. Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, et al. (2014): 
Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 
individuals. Genome Res 24:14-24. 

44. Lloyd-Jones LR, Holloway A, McRae A, Yang J, Small K, Zhao J, et al. (2017): The genetic 
architecture of gene expression in peripheral blood. Am J Hum Genet 100:228-237. 

45. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. (2015): 
A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 
47:1091-1098. 

46. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007): A chromatin landmark and 
transcription initiation at most promoters in human cells. Cell 130:77-88. 

47. Shlyueva D, Stampfel G, Stark A (2014): Transcriptional enhancers: from properties to 



36 

genome-wide predictions. Nat Rev Genet 15:272-286. 
48. Cheung P, Lau P (2005): Epigenetic regulation by histone methylation and histone variants. Mol 

Endocrinol 19:563-573. 
49. Brovkina MV, Duffie R, Burtis AEC, Clowney EJ (2021): Fruitless decommissions regulatory 

elements to implement cell-type-specific neuronal masculinization. PLoS Genet 17:e1009338. 
50. Bailey TL, Elkan C (1994): Fitting a mixture model by expectation maximization to discover motifs 

in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28-36. 
51. Quinlan AR, Hall IM (2010): BEDTools: a flexible suite of utilities for comparing genomic features. 

Bioinformatics 26:841-842. 
52. GTEx Consortium (2015): Human genomics. The Genotype-Tissue Expression (GTEx) pilot 

analysis: multitissue gene regulation in humans. Science 348:648-660. 
53. Zhang DF, Fan Y, Xu M, Wang G, Wang D, Li J, et al. (2019): Complement C7 is a novel risk gene 

for Alzheimer's disease in Han Chinese. Natl Sci Rev 6:257-274. 
54. Rustenhoven J, Smith AM, Smyth LC, Jansson D, Scotter EL, Swanson MEV, et al. (2018): PU.1 

regulates Alzheimer's disease-associated genes in primary human microglia. Mol Neurodegener 
13:44. 

55. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. (2015): 
Proteomics. Tissue-based map of the human proteome. Science 347:1260419. 

56. Skene NG, Grant SG (2016): Identification of vulnerable cell types in major brain disorders using 
single cell transcriptomes and expression weighted cell type enrichment. Front Neurosci 10:16. 

57. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. (2014): Efficient genome modification by 
CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11:399-402. 

58. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. (2017): 
Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 
551:464-471. 

59. Liao Y, Smyth GK, Shi W (2014): featureCounts: an efficient general purpose program for 
assigning sequence reads to genomic features. Bioinformatics 30:923-930. 

60. McCarthy DJ, Campbell KR, Lun AT, Wills QF (2017): Scater: pre-processing, quality control, 
normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33:1179-1186. 

61. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. (2016): deepTools2: a 
next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160-165. 

62. Zhang DF, Li J, Wu H, Cui Y, Bi R, Zhou HJ, et al. (2016): CFH variants affect structural and 
functional brain changes and genetic risk of Alzheimer's disease. Neuropsychopharmacology 
41:1034-1045. 

63. Xiang Q, Bi R, Xu M, Zhang DF, Tan L, Zhang C, et al. (2017): Rare genetic variants of the 
transthyretin gene are associated with Alzheimer's disease in Han Chinese. Mol Neurobiol 
54:5192-5200. 

64. Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ATC, Replication DIG, et al. 
(2012): Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 
additional variants influencing complex traits. Nat Genet 44:369-375, S361-363. 

65. Yang J, Lee SH, Goddard ME, Visscher PM (2011): GCTA: a tool for genome-wide complex trait 
analysis. Am J Hum Genet 88:76-82. 

66. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. (2011): Common variants at 
MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. 
Nat Genet 43:436-441. 

67. Willis SN, Tellier J, Liao Y, Trezise S, Light A, O'Donnell K, et al. (2017): Environmental sensing 
by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nat Commun 8:1426. 

68. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. (2010): LocusZoom: 
regional visualization of genome-wide association scan results. Bioinformatics 26:2336-2337. 

69. Li D, Hsu S, Purushotham D, Sears RL, Wang T (2019): WashU Epigenome Browser update 2019. 
Nucleic Acids Res 47:W158-W165. 

70. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. (2011): 
Integrative genomics viewer. Nat Biotechnol 29:24-26. 

71. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. (2003): Cytoscape: a 
software environment for integrated models of biomolecular interaction networks. Genome Res 
13:2498-2504. 

72. Barrett JC, Fry B, Maller J, Daly MJ (2005): Haploview: analysis and visualization of LD and 
haplotype maps. Bioinformatics 21:263-265. 

 


