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IMPORTANCE The genetic basis of bipolar disorder (BD) in Han Chinese individuals is not
fully understood.

OBJECTIVE To explore the genetic basis of BD in the Han Chinese population.

DESIGN, SETTING, AND PARTICIPANTS A genome-wide association study (GWAS), followed by
independent replication, was conducted to identify BD risk loci in Han Chinese individuals.
Individuals with BD were diagnosed based on DSM-IV criteria and had no history of
schizophrenia, mental retardation, or substance dependence; individuals without any
personal or family history of mental illnesses, including BD, were included as control
participants. In total, discovery samples from 1822 patients and 4650 control participants
passed quality control for the GWAS analysis. Replication analyses of samples from 958
patients and 2050 control participants were conducted. Summary statistics from the
European Psychiatric Genomics Consortium 2 (PGC2) BD GWAS (20 352 cases and 31 358
controls) were used for the trans-ancestry genetic correlation analysis, polygenetic risk score
analysis, and meta-analysis to compare BD genetic risk between Han Chinese and European
individuals. The study was performed in February 2020.

MAIN OUTCOMES AND MEASURES Single-nucleotide variations with P < 5.00 × 10−8 were
considered to show genome-wide significance of statistical association.

RESULTS The Han Chinese discovery GWAS sample included 1822 cases (mean [SD] age,
35.43 [14.12] years; 838 [46%] male) and 4650 controls (mean [SD] age, 27.48 [5.97] years;
2465 [53%] male), and the replication sample included 958 cases (mean [SD] age, 37.82
[15.54] years; 412 [43%] male) and 2050 controls (mean [SD] age, 27.50 [6.00] years; 1189
[58%] male). A novel BD risk locus in Han Chinese individuals was found near the gene
encoding transmembrane protein 108 (TMEM108, rs9863544; P = 2.49 × 10−8; odds ratio
[OR], 0.650; 95% CI, 0.559-0.756), which is required for dendritic spine development and
glutamatergic transmission in the dentate gyrus. Trans-ancestry genetic correlation
estimation (ρge = 0.652, SE = 0.106; P = 7.30 × 10−10) and polygenetic risk score analyses
(maximum liability-scaled Nagelkerke pseudo R2 = 1.27%; P = 1.30 × 10−19) showed evidence
of shared BD genetic risk between Han Chinese and European populations, and meta-analysis
identified 2 new GWAS risk loci near VRK2 (rs41335055; P = 4.98 × 10−9; OR, 0.849; 95% CI,
0.804-0.897) and RHEBL1 (rs7969091; P = 3.12 × 10−8; OR, 0.932; 95% CI, 0.909-0.956).

CONCLUSIONS AND RELEVANCE This GWAS study identified several loci and genes involved
in the heritable risk of BD, providing insights into its genetic architecture and biological basis.
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B ipolar disorder (BD) is a severe psychiatric illness char-
acterized by recurrent episodes of mania or hypoma-
nia and depression.1,2 The World Health Organization

estimated that the lifetime prevalence is 0.6% for bipolar I dis-
order (BD-I) and 0.4% for bipolar II disorder (BD-II) in 11 coun-
tries across the Americas, Europe, and Asia.3 According to ear-
lier studies, the lifetime prevalence of BD is approximately 5%
to 10% in first-degree relatives of patients and approximately
40% to 70% in monozygotic co-twins.4 Therefore, heritable
factors likely contribute to this disorder, and genetic analyses
could help to disentangle its mechanisms and to facilitate the
discovery of therapeutic targets.5,6 A recent genome-wide as-
sociation study (GWAS) estimated that approximately 23% of
BD heritability was attributed to common single-nucleotide
variations (SNVs) and provided implications for its pathology.7

Although GWASs have increased our knowledge of BD in
Europeans, genetic heterogeneity between continental popu-
lations exists and may result in uncertainty when generaliz-
ing these discoveries across different populations. For ex-
ample, a recent Japanese BD GWAS8 (including 2964 cases and
61 887 controls) reported on genome-wide risk loci that are
either shared among distinct populations or are specific to East
Asian individuals.9,10 Because most of the BD GWASs to date
have been performed in European populations, further analy-
ses of the genetic architecture of BD in other populations are
needed. A previous Han Chinese BD GWAS11 (including 1000
cases and 1000 controls) identified no statistically signifi-
cant loci, probably because of the limited sample size. There-
fore, we conducted a BD GWAS in a larger independent sample
(1822 cases and 4650 controls) of Han Chinese ancestry, fol-
lowed by replication in additional Han Chinese individuals (958
cases and 2050 controls), as well as a trans-ancestry meta-
analysis combining these results with summary statistics from
the European Psychiatric Genomics Consortium 2 (PGC2) BD
GWAS7 (20 352 cases and 31 358 controls).

Methods
Study Design
The study protocol for this GWAS and trans-ancestry meta-
analysis was approved by the institutional review board of the
Kunming Institute of Zoology, Chinese Academy of Sciences,
as well as ethics committees of all participating hospitals and
universities (provided in the eMethods in the Supplement). All
participants provided written informed consent before any
study-related procedures were performed. This study fol-
lowed the Strengthening the Reporting of Genetic Associa-
tion Studies (STREGA) reporting guideline. The study was per-
formed in February 2020.

In total, 6472 Han Chinese individuals (1822 BD cases and
4650 controls) were recruited in mainland China for the dis-
covery GWAS. A unique sample of 958 patients with BD and
2050 control participants of Han Chinese ancestry in main-
land China were included for the replication analysis. In both
the discovery GWAS and replication stages, patients with BD
were diagnosed through the use of an extensive clinical inter-
view and the Structured Clinical Interview for DSM-IV Axis I

Disorders–Patient Version. The control participants had no BD
and no history of any mental illness. Detailed descriptions of
the sample are provided in the eMethods in the Supplement.

Outcomes
Genotyping in the discovery stage was performed with either
the Illumina Infinium Global Screening Array (GSA) chip or
the Illumina Genome-Wide Asian Screening Array (ASA) chip
(Beijing Guoke Biotechnology Co, Ltd). Quality control (QC)
analyses were performed using the pipeline suggested by
Anderson et al.12 After QC, the autosomal biallelic SNVs on
different GWAS platforms underwent genotype imputation
using the prephasing imputation stepwise approach in
SHAPEIT and IMPUTE2 software programs,13,14 and the im-
putation reference set was obtained from phase 3 of the 1000
Genomes Project.15

Statistical Analysis
In each GWAS cohort, logistic regression of BD diagnosis on
imputed hard-called genotypes (with posterior probability >.95)
was performed,16 during which the associations of the top 20
principal components with BD diagnosis were evaluated, and
principal components associated with diagnostic status
(P ≤ .05) were included as covariates to control for popula-
tion stratification.17 The statistics in each GWAS cohort were
then combined for an inverse variance–weighted meta-
analysis using random-effects or fixed-effects models (re-
ferred to as the discovery GWAS). Linkage disequilibrium score
regression (LDSC) was applied to assess potential population
stratification and to estimate SNV heritability.18,19 Single-
nucleotide variations with 2-sided P < 5.00 × 10−8 were con-
sidered to show genome-wide significance.

Two expression quantitative trait loci (eQTL) data sets
(CommonMind Consortium20 and BrainSeq Phase 221) of
the dorsolateral prefrontal cortex (DLPFC) were obtained for
the summary data–based mendelian randomization22 and
transcriptome-wide association (TWAS)23 analyses. The
sample sizes of the RNA sequencing–based eQTL data sets were
467 and 397, respectively.

Given the shared clinical manifestations between differ-
ent psychiatric disorders and traits,24,25 we examined the ge-
netic correlations of BD with other psychiatric disorders (eg,
schizophrenia26,27 and depression28,29) and traits (cognitive

Key Points
Question What is the genetic architecture of bipolar disorder (BD)
in the Han Chinese population?

Findings In this genome-wide association study of 6472
individuals of Han Chinese ancestry (1822 cases and 4650
controls), several novel risk loci for BD were found, and
trans-ancestry genetic correlation estimation and polygenic risk
score analyses of Han Chinese and European individuals suggested
a shared genetic risk of BD.

Meaning Findings of this study highlighted novel genome-wide
significant risk loci for BD that can provide insight into the genetic
architecture of this disorder.
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performance,30 intelligence,31 and educational attainment30)
using LDSC (for analyses within the same population)18,19 or
Popcorn, version 1.0 (Brielin C. Brown [https://github.com/
brielin/Popcorn]) (for trans-ancestry analyses)32 based on the
GWAS summary statistics. The proportion of BD variance ex-
plained by risk SNVs identified in GWASs of those phenotypes
was also estimated using polygenic risk scores (PRSs).8,33 Fif-
teen pairs of PRS analyses were conducted in our study; hence,
P < .0033 was considered statistically significant after mul-
tiple correction (approximately 0.05 ÷ 15). Details of these GWAS
data sets are provided in the eMethods in the Supplement.

We examined the messenger RNA (mRNA) expression pat-
terns of the risk genes identified by GWAS in human tissues
using GTEx and BrainSpan data sets.34,35 We also used hyper-
geometric testing in the web-based platform FUMA36 to ex-
amine the tissue expression enrichment of the GWAS risk loci.

Results
GWAS of BD in the Han Chinese Population
We conducted a meta-analysis of 2 BD GWAS Han Chinese co-
horts, including 1822 cases (mean [SD] age, 35.43 [14.12] years;
838 [46%] male and 984 [54%] female) and 4650 controls
(mean [SD] age, 27.48 [5.97] years; 2465 [53%] male and 2185
[47%] female) (referred to as the discovery GWAS). After sys-
tematic QC analysis and imputation using phase 3 of the 1000
Genomes Project,15 we assessed the associations of 4 499 546
autosomal biallelic SNVs with imputation quality score (INFO)
greater than 0.8, minor allele frequency greater than 1%, call
rate greater than 95%, and Hardy-Weinberg equilibrium
P > 1.00 × 10−5. Population substructures of these samples were
examined through a principal components analysis (eFig-
ure 1 in the Supplement). The genomic inflation λ of the
discovery GWAS was 1.038, and the λ1000 (a scaled value to
1000 cases and 1000 controls) was 1.015. We then conducted
LDSC analysis to estimate BD polygenicity in these samples
based on precomputed linkage disequilibrium (LD) scores in
HapMap3 for East Asian individuals.18,19 The mean (SE) LDSC
intercept was 1.005 (0.008), and the mean (SE) attenuation
ratio was 0.077 (0.132), confirming polygenicity of BD in the
discovery GWAS and suggesting that only approximately 8%
of the observed genomic inflation in test statistics was attrib-
uted to population stratification.18,19 The LDSC estimated that
the mean (SE) SNV heritability in the discovery GWAS was
0.220 (0.043) to approximately 0.310 (0.059) on the liability
scale, assuming that the population prevalence of BD was 0.5%
to approximately 2%.18,19

Manhattan and quantile-quantile plots for the Han
Chinese discovery GWAS are shown in Figure 1A and in eFig-
ure 2 in the Supplement, respectively. The discovery GWAS
(1822 cases and 4650 controls) identified a single locus reach-
ing genome-wide significance, which is located at 3q22.1 in the
5′ upstream region of TMEM108 (OMIM 617361) and the 3′
downstream region of the noncoding RNA NPHP3-AS1 (Gene
ID 348808) (rs9863544; P = 5.00 × 10−8; odds ratio [OR], 0.590;
95% CI, 0.488-0.713) (Figure 2A).15,37 In addition, the discov-
ery GWAS identified 22 SNVs with P values lower than the

threshold of suggestive significance (ie, P = 5.00 × 10−6)
(eTable 1 in the Supplement). These SNVs appeared to repre-
sent 4 physically distinct regions after LD pruning at r2 = 0.1
(within 500 kilobase [kb]). To replicate these results, we tested
the top 4 SNVs from these distinct regions in an independent
sample of Han Chinese individuals, including 958 cases
(mean [SD] age, 37.82 [15.54] years; 412 [43%] male and 546
[57%] female) and 2050 controls (mean [SD] age, 27.50
[6.00] years; 1189 [58%] male and 861 [42%] female). We
confirmed that rs9863544 also showed nominal significance
(defined as P < .05) (P = .04; OR, 0.771; 95% CI, 0.600-0.991)
(Table 1). Detailed results obtained in the replication samples
are provided in eResults 1, eFigure 3, and eTable 2 in the
Supplement.

Meta-analysis of the discovery GWAS and replication
samples in Han Chinese individuals demonstrated that
rs9863544 had genome-wide significance (P = 2.49 × 10−8;
OR, 0.650; 95% CI, 0.559-0.756) (Table 1). We also explored
the mRNA expression patterns of the 2 genes (TMEM108 and
NPHP3-AS1) near rs9863544 in public RNA sequencing
resources. In the GTEx data set,34 the mRNA of NPHP3-AS1
was barely detectable in most human organs, including the
brain, whereas TMEM108 was widely expressed in the
human brain (eFigure 4 in the Supplement). Further analy-
ses of their temporal expression patterns in human brain in
the BrainSpan data set35 revealed statistically significantly
higher levels of TMEM108 mRNA in prenatal stages, which
declined after birth; the mRNA expression of NPHP3-AS1
remained low in human brain regardless of the developmen-
tal stage (eFigure 5 in the Supplement). We also examined
whether the genomic loci reaching the threshold of sugges-
tive significance (P ≤ 5.00 × 10−6) in previous East Asian BD
GWASs8,11 were statistically significant in our Han Chinese
sample. We found that rs7221716 (P = 5.60 × 10−7; OR, 1.170;
95% CI, 1.100-1.244 in the prior Japanese BD GWAS8) near
the PFAS (OMIM 602133) gene was nominally significant in
our Han Chinese discovery GWAS (P = .01; OR, 1.115; 95% CI,
1.023-1.216) and had genome-wide significance in a meta-
analysis combining the Han Chinese discovery GWAS and
the previous Japanese GWAS (P = 2.02 × 10−8; OR, 1.152; 95%
CI, 1.096-1.210) (detailed results are provided in eResults 2
and eTable 3 in the Supplement).

Trans-Ancestry Genetic Correlation and Meta-analysis
of BD in Han Chinese and European Populations
The association statistics of SNVs from the Han Chinese dis-
covery GWAS and the European PGC2 BD GWAS,7 as well as
precomputed LD scores for European and East Asian individu-
als in the 1000 Genomes Project,15 were obtained to estimate
the trans-ancestry genetic correlations of BD between Han
Chinese and European individuals using Popcorn, version 1.0.
That analysis revealed a statistically significant trans-
ancestry genetic effect correlation between the Han Chinese
discovery GWAS and the European PGC2 BD GWAS (mean [SE]
ρ for genetic effect [ρge] = 0.652 [0.106]; P = 7.30 × 10−10), as well
as a population genetic impact correlation accounting for the
different SNV allele frequencies between populations (mean
[SE] ρ for genetic impact [ρgi] = 0.651 [0.111]; P = 4.50 × 10−9).
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We then conducted a trans-ancestry meta-analysis
of our discovery GWAS and the European PGC2 BD GWAS.
A total of 3 742 365 autosomal biallelic SNVs with INFO
greater than 0.8 and minor allele frequency greater than
1% in both Han Chinese and European individuals were
included in the trans-ancestry meta-analysis. Of these SNVs,
46 441 SNVs (approximately 1.2% of the total SNVs) showed
pronounced heterogeneity (I2 >75%) and were thus meta-
analyzed using a random-effects model; the other 3 695 924
SNVs were meta-analyzed using a fixed-effects model given
their nonsignificant heterogeneity (I2 ≤75%). The genomic
inflation λ of the trans-ancestry meta-analysis was 1.355, and
the λ1000 was 1.013. The mean (SE) LDSC intercept (based
on precomputed LD scores for European populations) was
1.023 (0.011), and the mean (SE) attenuation ratio was 0.054
(0.025), indicating polygenicity rather than population
stratification.18,19 The mean (SE) LDSC SNV heritability esti-
mate for BD was 0.160 (0.008) to approximately 0.220 (0.011)
on the liability scale, assuming that the population preva-
lence of BD was 0.5% to approximately 2%.18,19

Manhattan and quantile-quantile plots for the trans-
ancestry meta-analysis are shown in Figure 1B and eFigure 6
in the Supplement, respectively. A total of 191 SNVs reached
the genome-wide significance threshold (P ≤ 5.00 × 10−8)
(eTable 4 in the Supplement). We then combined the SNVs with
r2 <0.1 within 500 kb based on European LD panels and noted
that they mapped to 23 physically distinct genomic regions
(Figure 1B). The top SNVs in each of these GWAS loci are listed
in Table 2. Further detailed characterization of these 23 GWAS
loci suggested that 21 of them had genome-wide significance
in either the GWAS stage or the GWAS plus replication stages
of the European PGC2 BD GWAS. The trans-ancestry meta-
analysis herein identified 2 novel loci (VRK2 [OMIM 602169]
and RHEBL1 [OMIM 618956]) that were not genome-wide
significant in the European PGC2 BD GWAS. Specifically, the
European PGC2 BD GWAS SNVs reaching the threshold of sug-
gestive significance in the 5′ upstream region of the VRK2 gene
showed nominal significance in our Han Chinese discovery
GWAS and showed genome-wide significance in the trans-
ancestry meta-analysis (eg, rs41335055; P = 9.85 × 10−8; OR,

Figure 1. Manhattan Plots
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0.854; 95% CI, 0.806-0.905 in the European PGC2 BD GWAS;
P = .01; OR, 0.808; 95% CI, 0.683-0.956 in the Han Chinese dis-
covery GWAS; and P = 4.98 × 10−9; OR, 0.849; 95% CI, 0.804-
0.897 in the trans-ancestry meta-analysis (Figure 2B). Simi-

Figure 2. Regional Association Plots
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loci in the trans-ancestry meta-analysis of BD. All regional association plots were
generated using LocusZoom.37 The linkage disequilibrium information is from
phase 3 of the 1000 Genomes Project.15 The dashed line represents the threshold
for genome-wide significance (P < 5.00 × 10−8). Mb indicates megabase.
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larly, the European PGC2 BD GWAS SNVs reaching the threshold
of statistical significance in the RHEBL1 gene showed nomi-
nal significance in our Han Chinese discovery GWAS and
showed genome-wide significance in the trans-ancestry meta-
analysis (eg, rs7969091; P = 3.25 × 10−7; OR, 0.933; 95% CI,
0.909-0.958 in the European PGC2 BD GWAS; P = .03; OR,
0.918; 95% CI, 0.848-0.993 in the Han Chinese discovery
GWAS; and P = 3.12 × 10−8; OR, 0.932; 95% CI, 0.909-0.956 in
the trans-ancestry meta-analysis) (Figure 2C). Herein, we re-
fer to the novel risk loci by the names of their closest genes,
without suggesting that a causal association between these
genes and BD; the previously implicated loci are still referred
to by the European PGC2 BD GWAS names.

In addition, we examined the 30 GWAS loci identified in
the European PGC2 BD GWAS in our trans-ancestry meta-
analysis (eTable 5 in the Supplement). We found that 18 of them
had genome-wide significance, including the previously known
loci at CACNA1C [OMIM 114205], TRANK1 [Gene ID 9881], ITIH1
[OMIM 147270], ANK3 [OMIM 600465], NCAN [Gene ID 1463],
SCN2A [OMIM 182390], and POU3F2 [OMIM 600494]. The top
SNVs or the high LD SNVs in another 8 loci (PLEKHO1, ADCY2,
RPS6KA2, SRPK2, MRPS33, FADS2, SHANK2, and STARD9)
identified in the European PGC2 BD GWAS were not geno-
typed or imputed in our discovery GWAS sample, so these loci
were not included in the trans-ancestry meta-analysis. The
other 4 loci (LMAN2L, FSTL5, THSD7A, and PC) from the
European PGC2 BD GWAS were not statistically significant in
the trans-ancestry meta-analysis because their allelic effect
directions in the Han Chinese discovery GWAS were the op-
posite of those in the European PGC2 BD GWAS.

Tissue Expression Enrichment, Biological Processes,
and In Silico Functional Analyses
To prioritize potential BD risk genes, we integrated the GWAS
summary statistics of the trans-ancestry meta-analysis with
the DLPFC eQTL data from both the CommonMind
Consortium20 and the BrainSeq Phase 221 data sets through
summary data–based mendelian randomization22 and TWAS23

analyses. Summary data–based mendelian randomization
identified a single gene (NEK4 [OMIM 601959]) that had a sta-
tistically significant association with BD after multiple test-
ing correction (P ≤ 1.00 × 10−5) in both DLPFC eQTL data sets,
without evidence of heterogeneity between GWAS and eQTL
association signals (eTable 6 in the Supplement). Transcrip-
tome-wide association identified 3 genes (NEK4 [OMIM
601959], GLT8D1 [OMIM 618399], and MCM3AP [OMIM
603294]) that had statistically significant associations with BD
after multiple correction in both DLPFC eQTL data sets
(P ≤ 2.50 × 10−5) (eTable 7 in the Supplement).

Hypergeometric testing using the web-based platform
FUMA36 was performed to examine tissue expression enrich-
ment (in 54 subdivided types of tissues in the GTEx data
set34) of the risk loci in our trans-ancestry meta-analysis.
Although the cerebellum had the strongest enrichment of
these genes (P = 1.78 × 10−12; false discovery rate [FDR],
5.31 × 10−11) (eFigure 7 in the Supplement), they were also
statistically significantly enriched in multiple other brain tis-
sues, such as the frontal cortex, anterior cingulate cortex,

nucleus accumbens, hippocampus, amygdala, and caudate
(FDR, ≤1.00 × 10−5). We then performed an enrichment
analysis using Multimarker Analysis of Genomic Annotation
(MAGMA)38 to examine biological processes and pathways
underlying BD genetic risk identified in the trans-ancestry
meta-analysis. One pathway (regulation of insulin secretion)
was statistically significantly enriched for genes with BD
associations after multiple correction (P = 4.83 × 10−6; FDR,
0.035) (eTable 8 in the Supplement).

PRS Analysis of BD Across Han Chinese
and European Populations
We analyzed the polygenic architecture of BD by performing
PRS analysis. The GAS GWAS sample was first used as the train-
ing data set to examine whether BD cases had a higher PRS than
controls in the ASA GWAS sample. This procedure was then
repeated with the training and target data sets swapped. Both
the training and target data sets could be used to predict the
risk of BD, and the maximum measures of the explained vari-
ance (ie, liability-scaled Nagelkerke pseudo R2) were approxi-
mately 2.42% when using GSA GWAS to predict ASA GWAS and
approximately 2.10% when using ASA GWAS to predict GSA
GWAS (P < 1.00 × 10−15) (Figure 3). Assuming that the popu-
lation prevalence of BD was 0.01, the liability-scaled Nagelkerke
pseudo R2 was calculated to estimate the variance of the dis-
order explained by the SNPs (eMethods in the Supplement).
We also examined the polygenic risk of BD across Han Chi-
nese and European populations using the European PGC2 BD
GWAS as the training data set and our total discovery GWAS
samples as the target data set. That analysis revealed that in-
dividuals with BD had a statistically significantly higher PRS
than control participants in the target data set of samples from
Han Chinese individuals (maximum liability-scaled Nagelkerke
pseudo R2 = 1.27%; P = 1.30 × 10−19) (Figure 3).

Shared Genetic Risk of BD and Other Psychiatric Disorders
or Traits
We conducted LDSC analysis18,19 to ascertain whether there was
a genetic correlation between the Han Chinese BD discovery
GWAS and the East Asian schizophrenia GWAS,26 as well as the
Han Chinese depression GWAS28 (eTable 9 in the Supple-
ment). That analysis revealed statistically significant genetic
correlations between BD and schizophrenia (mean [SE] r for
genetic [rg] = 0.535 [0.090]; LDSC P = 3.31 × 10−9) and be-
tween BD and depression (mean [SE] rg = 0.392 [0.153]; LDSC
P = .0110). In both Han Chinese and European populations, we
also found statistically significant trans-ancestry genetic ef-
fect correlations and population genetic impact correlations
between BD in Han Chinese individuals and other psychiatric
disorders and relevant traits in European individuals (eTable 9
in the Supplement), including schizophrenia (mean [SE]
ρge = 0.503 [0.074]; P = 1.25 × 10−11; mean [SE] ρgi = 0.486
[0.078]; P = 5.15 × 10−10),27 cognitive performance (mean [SE]
ρge = −0.284 [0.057]; P = 5.53 × 10−7; mean [SE] ρgi = −0.291
[0.058]; P = 4.78 × 10−7),30 intelligence (mean [SE] ρge = −0.257
[0.054]; P = 2.17 × 10−6; mean [SE] ρgi = −0.262 [0.055];
P = 1.85 × 10−6),31 and educational attainment (mean [SE]
ρge = −0.178 [0.051]; P = 4.31 × 10−4; mean [SE] ρgi = −0.182
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[0.050]; P = 2.40 × 10−4).30 The estimation of shared poly-
genic risk using PRS analysis yielded consistent results, and
details are shown in Figure 3 (eResults 3, eDiscussion, and
eFigure 8 in the Supplement).

Discussion
This Han Chinese BD GWAS revealed genome-wide signifi-
cant association between the TMEM108 locus and BD. Intrigu-
ingly, tmem108-deficient neurons in mice have fewer and
smaller spines, reduced neurogenesis, and decreased excit-
atory postsynaptic currents,39 and tmem108-deficient mice
have impaired sensorimotor gating and cognitive function.40

Therefore, TMEM108-correlated physiological processes likely
contribute to BD pathogenesis. However, the Han Chinese
genome-wide significant SNV rs9863544 and its surrounding
variations did not show evidence of association with BD in
Europeans (P = .23; OR, 1.016; 95% CI, 0.990-1.043) (eFig-
ure 9 in the Supplement),7 suggesting that it may be a Chinese-
specific BD risk locus. The T allele frequency of rs9863544 is
0.057 in Han Chinese and 0.439 in Europeans according to the
1000 Genomes Project,15 and LD structural differences in this
locus between the 2 populations are also evident (ie, SNVs
around rs9863544 exhibit stronger LD in Han Chinese than in
Europeans) (eFigure 10 in the Supplement). Therefore, differ-
ences in both allele frequencies and LD structures implicate
potential genetic heterogeneity of this locus between conti-
nental populations, which likely resulted from their different
population histories and specific environmental adaptations.41

In the trans-ancestry meta-analysis, we identified novel
risk loci (eg, VRK2 and RHEBL1) that did not reach genome-
wide significance in the European PGC2 BD GWAS. Indeed,
studies42,43 have reported preliminary evidence that VRK2
may alter neuronal proliferation and migration, as well as
microglia-mediated synapse elimination. Common varia-
tions near VRK2 have also shown genome-wide significant
associations with schizophrenia26,27,43-45 and depression,29

supporting the putative involvement of VRK2 in multiple
psychiatric disorders.46 Another novel RHEBL1 locus in the
present trans-ancestry meta-analysis, although it did not
show genome-wide significance in the European PGC2 BD
GWAS, was previously implicated in a smaller BD GWAS of
Europeans.47 Despite the unclear function of RHEBL1, this
gene encodes a brain-enriched G-protein activator of the
mechanistic target of rapamycin (mTOR) pathway and thus
likely participates in neurodevelopmental and neurodegen-
erative disorders.48,49

In the post-GWAS analysis based on the trans-ancestry
meta-analysis results, we identified 3 genes (NEK4, GLT8D1,
and MCM3AP) having statistically significant brain eQTL as-
sociations with genetic risk using at least one approach. It has
been previously shown that NEK4 and GLT8D1 can alter den-
dritic spine development and synaptic transmission,50,51 which
is in line with the pathological hypothesis of BD.52-54 How-
ever, the function of MCM3AP in the brain and in BD patho-
genesis is less clear. Further investigations of these genes in
BD-relevant physiological and behavioral abnormalities using
animal models are necessary. Although some previously iden-
tified BD risk genes (eg, CACNA1C, ANK3, NCAN, SCN2A, and

Figure 3. Polygenic Risk Score Analysis
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POU3F2) were not highlighted in the present post-GWAS analy-
sis, these genes are still worth investigating because their
associations with BD genetic risk and pathophysiology have
been confirmed from multiple perspectives.5 The involve-
ment of CACNA1C and ANK3 in BD has been extensively de-
scribed in studies using the approaches of functional genom-
ics, transcriptomics, and physiology.55-65 Similarly, ncan
knockout (ncan−/−) mice exhibited mania-like behavioral ab-
normalities but normalized after lithium administration,66

SCN2A encodes the sodium voltage-gated channel alpha
subunit 2 that changes neurophysiology and cognitive
processes,67,68 and the protein encoded by POU3F2 alters the
differentiation and proliferation of neural progenitor cells.69

Limitations
This study has some limitations. First, the post-GWAS analy-
ses were primarily conducted using European-based eQTL data
or European LD reference panels, which would impact the
prioritization of risk genes and variants given the genetic

heterogeneity between Han Chinese and European individu-
als. Further analyses in Han Chinese individuals using such
resources are necessary. Second, the control participants
in the present study were recruited based on their self-
reported health status rather than screening by profession-
als. Therefore, potential “contamination” of the controls by
individuals having undiagnosed psychiatric disorders may
need to be addressed.70 However, the consequences of such
contamination, if any, are likely minimal because the life-
time prevalence of BD is only approximately 1% in the gen-
eral population.3

Conclusions
This study describes several novel risk loci for BD and a shared
genetic basis for BD across Han Chinese and European popu-
lations. Further investigations are warranted to illuminate
the underlying pathological mechanisms.
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